Advertisements
Advertisements
प्रश्न
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
उत्तर
\[\frac{d}{dx}\left( \frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2} \right)\]
\[ = \frac{1}{3}\frac{d}{dx}\left( x^3 \right) - 2\frac{d}{dx}\left( x^\frac{1}{2} \right) + 5\frac{d}{dx}\left( x^{- 2} \right)\]
\[ = \frac{1}{3}\left( 3 x^2 \right) - 2 . \frac{1}{2} . x^\frac{- 1}{2} + 5\left( - 2 \right) x^{- 3} \]
\[ = x^2 - x^\frac{- 1}{2} - 10 x^{- 3}\]
APPEARS IN
संबंधित प्रश्न
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of x–3 (5 + 3x).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of f (x) = 3x at x = 2
\[\frac{x + 2}{3x + 5}\]
k xn
(x2 + 1) (x − 5)
Differentiate of the following from first principle:
eax + b
x ex
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
sin x + cos x
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
tan2 x
tan 2x
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
(x sin x + cos x ) (ex + x2 log x)
(1 − 2 tan x) (5 + 4 sin x)
sin2 x
(2x2 − 3) sin x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
(ax + b)n (cx + d)n
\[\frac{x + \cos x}{\tan x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
If f (x) = \[\log_{x_2}\]write the value of f' (x).
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Find the derivative of f(x) = tan(ax + b), by first principle.