Advertisements
Advertisements
प्रश्न
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
उत्तर
\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[\frac{d}{dx}\left( a^\sqrt{x} \right) = \lim_{h \to 0} \frac{a^\sqrt{x + h} - a^\sqrt{x}}{h}\]
\[ = \lim_{h \to 0} \frac{a^\sqrt{x} \left( a^\sqrt{x + h} - \sqrt{x} - 1 \right)}{\left( x + h \right) - \left( x \right)}\]
\[ = a^\sqrt{x} \lim_{h \to 0} \frac{\left( a^\sqrt{x + h} - \sqrt{x} - 1 \right)}{\left( \sqrt{x + h} \right)^2 - \left( \sqrt{x} \right)^2}\]
\[ = a^\sqrt{x} \lim_{h \to 0} \frac{\left( a^\sqrt{x + h} - \sqrt{x} - 1 \right)}{\left( \sqrt{x + h} - \sqrt{x} \right)\left( \sqrt{x + h} + \sqrt{x} \right)}\]
\[ = a^\sqrt{x} \lim_{h \to 0} \frac{\left( a^\sqrt{x + h} - \sqrt{x} - 1 \right)}{\left( \sqrt{x + h} - \sqrt{x} \right)} \lim_{h \to 0} \frac{1}{\left( \sqrt{x + h} + \sqrt{x} \right)}\]
\[ = a^\sqrt{x} \log_e a \frac{1}{2\sqrt{x}}\]
\[ = \frac{1}{2\sqrt{x}} a^\sqrt{x} \log_e a\]
\[\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x–3 (5 + 3x).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
\[\frac{1}{x^3}\]
\[\frac{1}{\sqrt{3 - x}}\]
(x + 2)3
(x2 + 1) (x − 5)
Differentiate each of the following from first principle:
e−x
x ex
Differentiate of the following from first principle:
(−x)−1
Differentiate of the following from first principle:
x sin x
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
x2 sin x
\[\tan \sqrt{x}\]
ex log a + ea long x + ea log a
log3 x + 3 loge x + 2 tan x
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\frac{2 x^2 + 3x + 4}{x}\]
Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.
x4 (5 sin x − 3 cos x)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]