हिंदी

Differentiate each of the following from first principle: x2 sin x - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate each of the following from first principle:

 x2 sin x

उत्तर

\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h \right)^2 \sin \left( x + h \right) - x^2 \sin x}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x^2 + h^2 + 2xh \right)\left( \sin x \cos h + \cos x \sin h \right) - x^2 \sin x}{h}\]
\[ = \lim_{h \to 0} \frac{x^2 \sin x \cos h + x^2 \cos x \sin h + h^2 \sin x \cos h + h^2 \cos x \sin h + 2xh \sin x \cos h + 2xh \cos x \sin h - x^2 \sin x}{h}\]
\[ = \lim_{h \to 0} \frac{x^2 \sin x \cos h - x^2 \sin x + x^2 \cos x \sin h + h^2 \sin x \cos h + h^2 \cos x \sin h + 2xh \sin x \cos h + 2xh \cos x \sin h}{h}\]
\[ = x^2 \sin x \lim_{h \to 0} \frac{\cos h - 1}{h} + x^2 \cos x \lim_{h \to 0} \frac{\sin h}{h} + \sin x \lim_{h \to 0} h \cos h + \cos x \lim_{h \to 0} h \sin h + 2x \sin x \lim_{h \to 0} \cosh + 2x \cos x \lim_{h \to 0} \sin h\]
\[ = x^2 \sin x \lim_{h \to 0} \frac{- 2 \sin^2 \frac{h}{2}}{\frac{h^2}{4}} \times \frac{h}{4} + x^2 \cos x \lim_{h \to 0} \frac{\sin h}{h} + \sin x \lim_{h \to 0} h \cos h + \cos x \lim_{h \to 0} h \sin h + 2x \sin x \lim_{h \to 0} \cosh + 2x \cos x \lim_{h \to 0} \sin h \left[ \because \lim_{h \to 0} \frac{\sin^2 \frac{h}{2}}{\frac{h^2}{4}} = \lim_{h \to 0} \frac{\sin \frac{h}{2}}{\frac{h}{2}} \times \lim_{h \to 0} \frac{\sin \frac{h}{2}}{\frac{h}{2}} = 1 \times 1, i . e . 1 \right]\]
\[ = - x^2 \sin x \times \lim_{h \to 0} \frac{h}{2} + x^2 \cos x \lim_{h \to 0} \frac{\sin h}{h} + \sin x \lim_{h \to 0} h \cos h + \cos x \lim_{h \to 0} h \sin h + 2x \sin x \lim_{h \to 0} \cosh + 2x \cos x \lim_{h \to 0} \sin h \]
\[ = - x^2 \sin x \times 0 + x^2 \cos x \left( 1 \right) + \sin x \left( 0 \right) + \cos x \left( 0 \right) + 2x \sin x \left( 1 \right) + 2x \cos x \left( 0 \right)\]
\[ = 0 + x^2 \cos x + 2x \sin x\]
\[ = 0 + x^2 \cos x + 2x \sin x\]
\[ = x^2 \cos x + 2x \sin x\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.2 | Q 3.04 | पृष्ठ २६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

cosec x cot x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


 (x2 + 1) (x − 5)


\[\frac{2x + 3}{x - 2}\] 


x ex


Differentiate each of the following from first principle:

\[3^{x^2}\]


tan2 


ex log a + ea long x + ea log a


(2x2 + 1) (3x + 2) 


\[\frac{2 x^2 + 3x + 4}{x}\] 


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  


sin x cos x


sin2 


\[e^x \log \sqrt{x} \tan x\] 


x4 (3 − 4x−5)


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


\[\frac{a + b \sin x}{c + d \cos x}\] 


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Find the derivative of 2x4 + x.


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×