Advertisements
Advertisements
प्रश्न
\[e^x \log \sqrt{x} \tan x\]
उत्तर
\[\text{ Let } u = e^x ; v = \log \sqrt{x}; w = \tan x\]
\[\text{ Then } , u' = e^x ; v' = \frac{1}{\sqrt{x}} \times \frac{1}{2\sqrt{x}} = \frac{1}{2x}; w' = \sec^2 x\]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uvw \right) = u'vw + uv'w + uvw'\]
\[ = e^x \log \sqrt{x}\tan x + e^x \times \frac{1}{2x}\tan x + e^x \log \sqrt{x} \sec^2 x\]
\[ = e^x \left( \log x^\frac{1}{2} . \tan x + \frac{\tan x}{2x} + \log x^\frac{1}{2} . \sec^2 x \right)\]
\[ = e^x \left( \frac{1}{2} \log x . \tan x + \frac{\tan x}{2x} + \frac{1}{2} \log x . \sec^2 x \right)\]
\[ = \frac{e^x}{2}\left( \log x . \tan x + \frac{\tan x}{x} + \log x . \sec^2 x \right)\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of 99x at x = 100.
Find the derivative of x at x = 1.
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
\[\frac{1}{x^3}\]
(x2 + 1) (x − 5)
Differentiate of the following from first principle:
sin (x + 1)
Differentiate of the following from first principle:
x cos x
Differentiate each of the following from first principle:
x2 sin x
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
\[\cos \sqrt{x}\]
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
(x3 + x2 + 1) sin x
\[\frac{2^x \cot x}{\sqrt{x}}\]
x4 (5 sin x − 3 cos x)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
(ax + b) (a + d)2
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.