हिंदी

E X Log √ X Tan X - Mathematics

Advertisements
Advertisements

प्रश्न

\[e^x \log \sqrt{x} \tan x\] 

उत्तर

\[\text{ Let } u = e^x ; v = \log \sqrt{x}; w = \tan x\]
\[\text{ Then } , u' = e^x ; v' = \frac{1}{\sqrt{x}} \times \frac{1}{2\sqrt{x}} = \frac{1}{2x}; w' = \sec^2 x\]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uvw \right) = u'vw + uv'w + uvw'\]
\[ = e^x \log \sqrt{x}\tan x + e^x \times \frac{1}{2x}\tan x + e^x \log \sqrt{x} \sec^2 x\]
\[ = e^x \left( \log x^\frac{1}{2} . \tan x + \frac{\tan x}{2x} + \log x^\frac{1}{2} . \sec^2 x \right)\]
\[ = e^x \left( \frac{1}{2} \log x . \tan x + \frac{\tan x}{2x} + \frac{1}{2} \log x . \sec^2 x \right)\]
\[ = \frac{e^x}{2}\left( \log x . \tan x + \frac{\tan x}{x} + \log x . \sec^2 x \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.4 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.4 | Q 17 | पृष्ठ ३९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of 99x at x = 100.


Find the derivative of x at x = 1.


Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

cosec x cot x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


\[\frac{1}{x^3}\]


 (x2 + 1) (x − 5)


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate of the following from first principle:

 x cos x


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle: 

\[e^{x^2 + 1}\]


\[\cos \sqrt{x}\]


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

(x3 + x2 + 1) sin 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


x4 (5 sin x − 3 cos x)


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)


(ax + b) (a + d)2


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


\[\frac{x}{1 + \tan x}\] 


\[\frac{\sec x - 1}{\sec x + 1}\] 


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×