मराठी

E X Log √ X Tan X - Mathematics

Advertisements
Advertisements

प्रश्न

\[e^x \log \sqrt{x} \tan x\] 

उत्तर

\[\text{ Let } u = e^x ; v = \log \sqrt{x}; w = \tan x\]
\[\text{ Then } , u' = e^x ; v' = \frac{1}{\sqrt{x}} \times \frac{1}{2\sqrt{x}} = \frac{1}{2x}; w' = \sec^2 x\]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uvw \right) = u'vw + uv'w + uvw'\]
\[ = e^x \log \sqrt{x}\tan x + e^x \times \frac{1}{2x}\tan x + e^x \log \sqrt{x} \sec^2 x\]
\[ = e^x \left( \log x^\frac{1}{2} . \tan x + \frac{\tan x}{2x} + \log x^\frac{1}{2} . \sec^2 x \right)\]
\[ = e^x \left( \frac{1}{2} \log x . \tan x + \frac{\tan x}{2x} + \frac{1}{2} \log x . \sec^2 x \right)\]
\[ = \frac{e^x}{2}\left( \log x . \tan x + \frac{\tan x}{x} + \log x . \sec^2 x \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.4 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.4 | Q 17 | पृष्ठ ३९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of (x) = tan x at x = 0 


\[\frac{x + 1}{x + 2}\]


k xn


(x + 2)3


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each of the following from first principle:

x2 e


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


tan2 


tan (2x + 1) 


 tan 2


3x + x3 + 33


 log3 x + 3 loge x + 2 tan x


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


x5 ex + x6 log 


(x sin x + cos x) (x cos x − sin x


x5 (3 − 6x−9


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


(ax + b) (a + d)2


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{x}{1 + \tan x}\] 


\[\frac{p x^2 + qx + r}{ax + b}\]


\[\frac{ax + b}{p x^2 + qx + r}\] 


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Find the derivative of x2 cosx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×