मराठी

Mark the Correct Alternative in of the Following: If F(X) = X Sinx, Then F ′ ( π 2 ) = - Mathematics

Advertisements
Advertisements

प्रश्न

Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 

पर्याय

  • 1            

  • −1 

  • \[\frac{1}{2}\] 

MCQ

उत्तर

f(x) = x sinx
Differentiating both sides with respect to x, we get 

\[f'\left( x \right) = x \times \frac{d}{dx}\left( \sin x \right) + \sin x \times \frac{d}{dx}\left( x \right) \left( \text{ Product rule } \right)\]
\[ = x \times \cos x + \sin x \times 1\]
\[ = x \cos x + \sin x\] 

Putting \[x = \frac{\pi}{2}\] 

 we get \[f'\left( \frac{\pi}{2} \right) = \frac{\pi}{2} \times \cos\left( \frac{\pi}{2} \right) + \sin\left( \frac{\pi}{2} \right)\]
\[ = \frac{\pi}{2} \times 0 + 1\]
\[ = 1\]

Hence, the correct answer is option (b).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.7 [पृष्ठ ४८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.7 | Q 12 | पृष्ठ ४८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of 99x at x = 100.


For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of f (x) = 99x at x = 100 


\[\frac{x + 1}{x + 2}\]


\[\sqrt{2 x^2 + 1}\]


Differentiate  of the following from first principle: 

− x


Differentiate  of the following from first principle:

sin (x + 1)


tan2 


\[\tan \sqrt{x}\]


\[\tan \sqrt{x}\] 


x4 − 2 sin x + 3 cos x


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


\[\frac{2 x^2 + 3x + 4}{x}\] 


\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 


2 sec x + 3 cot x − 4 tan x


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


x3 e


sin x cos x


(x sin x + cos x) (x cos x − sin x


(1 +x2) cos x


\[e^x \log \sqrt{x} \tan x\] 


x4 (5 sin x − 3 cos x)


x4 (3 − 4x−5)


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{x}{\sin^n x}\]


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Find the derivative of 2x4 + x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×