Advertisements
Advertisements
प्रश्न
Find the derivative of 99x at x = 100.
उत्तर
`f'(a) = lim_(x → a) (f(a + h) - f(a))/h`
`f'(100) = lim_(h → 0) (99 (100 + h) - 99 xx 100)/h`
= ` lim_(h → 0) (99 xx 100 + 99h - 99 xx 100)/h`
= `= lim_(h → 0)(99 xx h)/h`
= 99
APPEARS IN
संबंधित प्रश्न
Find the derivative of x at x = 1.
Find the derivative of x–3 (5 + 3x).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of f (x) x at x = 1
Find the derivative of f (x) = tan x at x = 0
\[\frac{x^2 - 1}{x}\]
Differentiate of the following from first principle:
eax + b
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
tan2 x
\[\cos \sqrt{x}\]
ex log a + ea long x + ea log a
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
(1 − 2 tan x) (5 + 4 sin x)
x5 (3 − 6x−9)
x−4 (3 − 4x−5)
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
Find the derivative of 2x4 + x.
Find the derivative of x2 cosx.
Find the derivative of f(x) = tan(ax + b), by first principle.
`(a + b sin x)/(c + d cos x)`