Advertisements
Advertisements
प्रश्न
\[\frac{\sec x - 1}{\sec x + 1}\]
उत्तर
\[\text{ Then }, u' = \sec x tan x; v' = \sec x \tan x\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{sec x - 1}{sec x + 1} \right) = \frac{\left( \sec x + 1 \right)\sec x \tan x - \left( \sec x - 1 \right)\sec x \tan x}{\left( sec x + 1 \right)^2}\]
\[ = \frac{\sec^2 x \tan x + \sec x \tan x - \sec^2 x \tan x + \sec x \tan x}{\left( \sec x + 1 \right)^2}\]
\[ = \frac{2\sec x \tan x}{\left( \sec x + 1 \right)^2}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x at x = 1.
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
k xn
(x + 2)3
\[\sqrt{2 x^2 + 1}\]
Differentiate of the following from first principle:
e3x
Differentiate of the following from first principle:
x sin x
Differentiate of the following from first principle:
x cos x
\[\sqrt{\tan x}\]
\[\tan \sqrt{x}\]
x4 − 2 sin x + 3 cos x
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
\[\frac{2 x^2 + 3x + 4}{x}\]
2 sec x + 3 cot x − 4 tan x
cos (x + a)
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
x2 ex log x
(1 +x2) cos x
x−4 (3 − 4x−5)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
(ax + b) (a + d)2
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.