मराठी

Sec X − 1 Sec X + 1 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{\sec x - 1}{\sec x + 1}\] 

उत्तर

\[\text{ Then }, u' = \sec x tan x; v' = \sec x \tan x\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{sec x - 1}{sec x + 1} \right) = \frac{\left( \sec x + 1 \right)\sec x \tan x - \left( \sec x - 1 \right)\sec x \tan x}{\left( sec x + 1 \right)^2}\]
\[ = \frac{\sec^2 x \tan x + \sec x \tan x - \sec^2 x \tan x + \sec x \tan x}{\left( \sec x + 1 \right)^2}\]
\[ = \frac{2\sec x \tan x}{\left( \sec x + 1 \right)^2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.5 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.5 | Q 25 | पृष्ठ ४४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x at x = 1.


For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


Find the derivative of the following function at the indicated point:


k xn


(x + 2)3


\[\sqrt{2 x^2 + 1}\]


Differentiate  of the following from first principle:

e3x


Differentiate  of the following from first principle:

 x sin x


Differentiate of the following from first principle:

 x cos x


\[\sqrt{\tan x}\]


\[\tan \sqrt{x}\]


x4 − 2 sin x + 3 cos x


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


\[\frac{2 x^2 + 3x + 4}{x}\] 


2 sec x + 3 cot x − 4 tan x


cos (x + a)


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


x2 ex log 


(1 +x2) cos x


x4 (3 − 4x−5)


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)


(ax + b) (a + d)2


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{x}{1 + \tan x}\] 


\[\frac{ax + b}{p x^2 + qx + r}\] 


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×