Advertisements
Advertisements
प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
उत्तर
Let f(x) = `(sec x - 1)/(sec x + 1)`
f(x) = `(1/cos x -1)/(1/cos x +1)`
= `(1 - cos x)/(1 + cos x)`
By quotient rule,
f'(x) = `((1 + cosx)d/dx(1 - cosx)-(1 - cos x)d/dx(1 + cos x))/((1 + cos x^2))`
= `((1 + cos x) (sin x) - (1 - cos x) (-sin x))/((1 + cos x)^2)`
= `(sin x + cos x sin x + sin x - sin x cos x) /(1 + cos x)^2`
= `(2 sin x)/(1 + cos x)^2`
= `(2 sin x)/(1 + 1/sec x)^2 = (2 sin x)/((sec x + 1)^2/(sec^2 x))`
= `(2 sin x sec^2x)/ (secx+1)^2`
= `((2 sin x)/(cos x)sec x)/(sec x + 1)^2`
= `(2sec x tan x)/(sec x + 1)^2`
APPEARS IN
संबंधित प्रश्न
Find the derivative of x–3 (5 + 3x).
Find the derivative of x5 (3 – 6x–9).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
\[\frac{2}{x}\]
\[\frac{x + 2}{3x + 5}\]
x2 + x + 3
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
e3x
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
sin x + cos x
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
\[\sqrt{\tan x}\]
\[\frac{2 x^2 + 3x + 4}{x}\]
Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
(1 +x2) cos x
x3 ex cos x
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{x \tan x}{\sec x + \tan x}\]
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to