मराठी

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): secx-1secx+1 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`

बेरीज

उत्तर

Let f(x) = `(sec x - 1)/(sec x + 1)`

f(x) = `(1/cos x -1)/(1/cos x +1)`

= `(1 - cos x)/(1 + cos x)`

By quotient rule,

f'(x) = `((1 + cosx)d/dx(1 - cosx)-(1 - cos x)d/dx(1 + cos x))/((1 + cos x^2))`

= `((1 + cos x) (sin x) - (1 - cos x) (-sin x))/((1 + cos x)^2)`

= `(sin x + cos x sin x + sin x - sin x cos x) /(1 + cos x)^2`

= `(2 sin x)/(1 + cos x)^2`

= `(2 sin x)/(1 + 1/sec x)^2 = (2 sin x)/((sec x + 1)^2/(sec^2 x))`

= `(2 sin x sec^2x)/ (secx+1)^2`

= `((2 sin x)/(cos x)sec x)/(sec x + 1)^2`

= `(2sec x tan x)/(sec x + 1)^2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Limits and Derivatives - Miscellaneous Exercise [पृष्ठ ३१८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 13 Limits and Derivatives
Miscellaneous Exercise | Q 18 | पृष्ठ ३१८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x–3 (5 + 3x).


Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

cosec x cot x


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


\[\frac{2}{x}\]


\[\frac{x + 2}{3x + 5}\]


 x2 + x + 3


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle:

e3x


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle: 

sin x + cos x


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


\[\sqrt{\tan x}\]


\[\frac{2 x^2 + 3x + 4}{x}\] 


Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


(1 +x2) cos x


x3 ex cos 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{x \tan x}{\sec x + \tan x}\]


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{a + b \sin x}{c + d \cos x}\] 


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×