Advertisements
Advertisements
प्रश्न
Find the derivative of x5 (3 – 6x–9).
उत्तर
Let f (x) = x5 (3 – 6x–9)
By Leibnitz product rule,
f'(x) = `x^5 d/(dx) (3 - 6x^-9) + (3 - 6x^-9) d/(dx) (x^5)`
= x5 {0 - 6(-9)x-9-1} + (3 - 6x-9)(5x4)
= x5 (54x-10) + 15x4 - 30x-5
= 54x-5 + 15x4 - 30x-5
= 24x-5 + 15x4
= `15x^4 + 24/x^5`
APPEARS IN
संबंधित प्रश्न
Find the derivative of x2 – 2 at x = 10.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of f (x) = cos x at x = 0
Find the derivative of f (x) = tan x at x = 0
\[\frac{2}{x}\]
\[\frac{1}{\sqrt{x}}\]
\[\frac{x + 1}{x + 2}\]
\[\frac{1}{\sqrt{3 - x}}\]
(x2 + 1) (x − 5)
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
\[\cos \sqrt{x}\]
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.
x2 ex log x
(x3 + x2 + 1) sin x
\[\frac{2^x \cot x}{\sqrt{x}}\]
x2 sin x log x
(x sin x + cos x ) (ex + x2 log x)
(1 +x2) cos x
sin2 x
\[e^x \log \sqrt{x} \tan x\]
(2x2 − 3) sin x
Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same.
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{x^5 - \cos x}{\sin x}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
Find the derivative of 2x4 + x.
Find the derivative of x2 cosx.