मराठी

Write the Value of Lim X → a X F ( a ) − a F ( X ) X − a - Mathematics

Advertisements
Advertisements

प्रश्न

Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]

उत्तर

\[\lim_{x \to a} \frac{xf\left( a \right) - af\left( x \right)}{x - a}\]
\[ = \lim_{x \to a} \frac{xf\left( a \right) - af\left( x \right) - xf\left( x \right) + xf\left( x \right)}{x - a}\]
\[ = \lim_{x \to a} \frac{xf\left( a \right) - xf\left( x \right) + xf\left( x \right) - af\left( x \right)}{x - a}\]
\[ = \lim_{x \to a} \frac{- x\left( f\left( x \right) - f\left( a \right) \right) + \left( x - a \right)f\left( x \right)}{x - a}\]
\[ = \lim_{x \to a} - x \lim_{x \to a} \frac{f\left( x \right) - f\left( a \right)}{x - a} + \lim_{x \to a} \frac{\left( x - a \right)f\left( x \right)}{x - a}\]
\[ = - a f'\left( a \right) + f(a)\]
\[\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.6 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.6 | Q 2 | पृष्ठ ४६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x at x = 1.


For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of `2x - 3/4`


Find the derivative of x–3 (5 + 3x).


Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of f (x) = 3x at x = 2 


\[\frac{x + 1}{x + 2}\]


\[\frac{1}{\sqrt{3 - x}}\]


 x2 + x + 3


x ex


(2x2 + 1) (3x + 2) 


\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 


\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  


xn loga 


(x3 + x2 + 1) sin 


x5 ex + x6 log 


x4 (5 sin x − 3 cos x)


x5 (3 − 6x−9


x−3 (5 + 3x


(ax + b) (a + d)2


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{3^x}{x + \tan x}\] 


\[\frac{ax + b}{p x^2 + qx + r}\] 


\[\frac{1}{a x^2 + bx + c}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


(ax2 + cot x)(p + q cos x)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×