Advertisements
Advertisements
प्रश्न
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
उत्तर
\[\lim_{x \to a} \frac{xf\left( a \right) - af\left( x \right)}{x - a}\]
\[ = \lim_{x \to a} \frac{xf\left( a \right) - af\left( x \right) - xf\left( x \right) + xf\left( x \right)}{x - a}\]
\[ = \lim_{x \to a} \frac{xf\left( a \right) - xf\left( x \right) + xf\left( x \right) - af\left( x \right)}{x - a}\]
\[ = \lim_{x \to a} \frac{- x\left( f\left( x \right) - f\left( a \right) \right) + \left( x - a \right)f\left( x \right)}{x - a}\]
\[ = \lim_{x \to a} - x \lim_{x \to a} \frac{f\left( x \right) - f\left( a \right)}{x - a} + \lim_{x \to a} \frac{\left( x - a \right)f\left( x \right)}{x - a}\]
\[ = - a f'\left( a \right) + f(a)\]
\[\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x at x = 1.
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of `2x - 3/4`
Find the derivative of x–3 (5 + 3x).
Find the derivative of x5 (3 – 6x–9).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of f (x) = 3x at x = 2
\[\frac{x + 1}{x + 2}\]
\[\frac{1}{\sqrt{3 - x}}\]
x2 + x + 3
x ex
(2x2 + 1) (3x + 2)
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
xn loga x
(x3 + x2 + 1) sin x
x5 ex + x6 log x
x4 (5 sin x − 3 cos x)
x5 (3 − 6x−9)
x−3 (5 + 3x)
(ax + b) (a + d)2
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
\[\frac{1}{a x^2 + bx + c}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
(ax2 + cot x)(p + q cos x)