मराठी

If π 2 Then Find D D X ( √ 1 + Cos 2 X 2 ) - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]

उत्तर

\[\sqrt{\frac{1 + \cos 2x}{2}}\]
\[ = \sqrt{\frac{2 \cos^2 x}{2}}\]
\[ = \sqrt{\cos^2 x}\]
\[ = - \cos x (\because\frac{\pi}{2}<x<\pi)\]
\[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
\[ = \frac{d}{dx}\left( - \cos x \right)\]
\[ = - \left( - \sin x \right)\]
\[ = \sin x\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.6 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.6 | Q 4 | पृष्ठ ४७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x2 – 2 at x = 10.


Find the derivative of x–3 (5 + 3x).


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of f (x) = 3x at x = 2 


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of (x) = tan x at x = 0 


\[\frac{1}{x^3}\]


\[\frac{x + 2}{3x + 5}\]


\[\frac{1}{\sqrt{3 - x}}\]


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle:

e3x


Differentiate of the following from first principle:

(−x)−1


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle:

x2 e


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


\[\sqrt{\tan x}\]


\[\tan \sqrt{x}\] 


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


\[\frac{2 x^2 + 3x + 4}{x}\] 


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


cos (x + a)


x3 sin 


(1 − 2 tan x) (5 + 4 sin x)


x−3 (5 + 3x


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


\[\frac{a + b \sin x}{c + d \cos x}\] 


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×