Advertisements
Advertisements
प्रश्न
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
उत्तर
\[\sqrt{\frac{1 + \cos 2x}{2}}\]
\[ = \sqrt{\frac{2 \cos^2 x}{2}}\]
\[ = \sqrt{\cos^2 x}\]
\[ = - \cos x (\because\frac{\pi}{2}<x<\pi)\]
\[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
\[ = \frac{d}{dx}\left( - \cos x \right)\]
\[ = - \left( - \sin x \right)\]
\[ = \sin x\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x2 – 2 at x = 10.
Find the derivative of x–3 (5 + 3x).
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of f (x) = 3x at x = 2
Find the derivative of f (x) = x2 − 2 at x = 10
Find the derivative of f (x) = tan x at x = 0
\[\frac{1}{x^3}\]
\[\frac{x + 2}{3x + 5}\]
\[\frac{1}{\sqrt{3 - x}}\]
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
e3x
Differentiate of the following from first principle:
(−x)−1
Differentiate of the following from first principle:
sin (x + 1)
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
x2 ex
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
\[\sqrt{\tan x}\]
\[\tan \sqrt{x}\]
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
\[\frac{2 x^2 + 3x + 4}{x}\]
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
cos (x + a)
x3 sin x
(1 − 2 tan x) (5 + 4 sin x)
x−3 (5 + 3x)
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]