Advertisements
Advertisements
प्रश्न
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
उत्तर
\[\frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sqrt{\sin \left( 2x + 2h \right)} - \sqrt{\sin 2x}}{h} \times \frac{\sqrt{\sin \left( 2x + 2h \right)} + \sqrt{\sin 2x}}{\sqrt{\sin \left( 2x + 2h \right)} + \sqrt{\sin 2x}}\]
\[ = \lim_{h \to 0} \frac{\sin \left( 2x + 2h \right) - \sin 2x}{h \left( \sqrt{\sin \left( 2x + 2h \right)} + \sqrt{\sin 2x} \right)}\]
\[\text{ We have }:\]
\[sin C-sin D= 2 cos\left( \frac{C + D}{2} \right)\sin\left( \frac{C - D}{2} \right)\]
\[ = \lim_{h \to 0} \frac{2 \cos \left( \frac{2x + 2h + 2x}{2} \right) \sin \left( \frac{2x + 2h - 2x}{2} \right)}{h \left( \sqrt{\sin \left( 2x + 2h \right)} + \sqrt{\sin 2x} \right)}\]
\[ = \lim_{h \to 0} \frac{2 \cos \left( 2x + h \right) \sin h}{h \left( \sqrt{\sin \left( 2x + 2h \right)} + \sqrt{\sin 2x} \right)}\]
\[ = \lim_{h \to 0} 2 \cos \left( 2x + h \right) \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} \frac{1}{\left( \sqrt{\sin \left( 2x + 2h \right)} + \sqrt{\sin 2x} \right)} \]
\[ = 2 \cos 2x \left( 1 \right) \frac{1}{\sqrt{\sin 2x} + \sqrt{\sin 2x}}\]
\[ = \frac{2 \cos 2x}{2\sqrt{\sin 2x}}\]
\[ = \frac{\cos 2x}{\sqrt{\sin 2x}}\]
\[\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x–3 (5 + 3x).
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of f (x) = cos x at x = 0
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
(x2 + 1) (x − 5)
Differentiate of the following from first principle:
− x
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate of the following from first principle:
x sin x
Differentiate each of the following from first principle:
x2 sin x
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
ex log a + ea long x + ea log a
(2x2 + 1) (3x + 2)
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
2 sec x + 3 cot x − 4 tan x
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
(x sin x + cos x ) (ex + x2 log x)
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
x4 (5 sin x − 3 cos x)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{x}{\sin^n x}\]
\[\frac{1}{a x^2 + bx + c}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
`(a + b sin x)/(c + d cos x)`