मराठी

Differentiate Each of the Following from First Principle: √ Sin 2 X - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 

उत्तर

\[\frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sqrt{\sin \left( 2x + 2h \right)} - \sqrt{\sin 2x}}{h} \times \frac{\sqrt{\sin \left( 2x + 2h \right)} + \sqrt{\sin 2x}}{\sqrt{\sin \left( 2x + 2h \right)} + \sqrt{\sin 2x}}\]
\[ = \lim_{h \to 0} \frac{\sin \left( 2x + 2h \right) - \sin 2x}{h \left( \sqrt{\sin \left( 2x + 2h \right)} + \sqrt{\sin 2x} \right)}\]
\[\text{ We have }:\]
\[sin C-sin D= 2 cos\left( \frac{C + D}{2} \right)\sin\left( \frac{C - D}{2} \right)\]
\[ = \lim_{h \to 0} \frac{2 \cos \left( \frac{2x + 2h + 2x}{2} \right) \sin \left( \frac{2x + 2h - 2x}{2} \right)}{h \left( \sqrt{\sin \left( 2x + 2h \right)} + \sqrt{\sin 2x} \right)}\]
\[ = \lim_{h \to 0} \frac{2 \cos \left( 2x + h \right) \sin h}{h \left( \sqrt{\sin \left( 2x + 2h \right)} + \sqrt{\sin 2x} \right)}\]
\[ = \lim_{h \to 0} 2 \cos \left( 2x + h \right) \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} \frac{1}{\left( \sqrt{\sin \left( 2x + 2h \right)} + \sqrt{\sin 2x} \right)} \]
\[ = 2 \cos 2x \left( 1 \right) \frac{1}{\sqrt{\sin 2x} + \sqrt{\sin 2x}}\]
\[ = \frac{2 \cos 2x}{2\sqrt{\sin 2x}}\]
\[ = \frac{\cos 2x}{\sqrt{\sin 2x}}\]
\[\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.2 | Q 3.01 | पृष्ठ २६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x–3 (5 + 3x).


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

cosec x cot x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of f (x) = cos x at x = 0


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


 (x2 + 1) (x − 5)


Differentiate  of the following from first principle: 

− x


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate  of the following from first principle:

 x sin x


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle: 

\[e^{x^2 + 1}\]


ex log a + ea long x + ea log a


(2x2 + 1) (3x + 2) 


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


2 sec x + 3 cot x − 4 tan x


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


(x sin x + cos x ) (ex + x2 log x


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


x4 (5 sin x − 3 cos x)


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{1 + \log x}{1 - \log x}\] 


\[\frac{x}{\sin^n x}\]


\[\frac{1}{a x^2 + bx + c}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×