मराठी

Mark the correct alternative in of the following: If f ( x ) = 1 − x + x 2 − x 3 + . . . − x 99 + x 100 then f ′ ( 1 ) - Mathematics

Advertisements
Advertisements

प्रश्न

Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 

पर्याय

  •  150       

  • −50                   

  • −150            

  • 50 

MCQ

उत्तर

\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\] 

Differentiating both sides with respect to x, we get

\[f'\left( x \right) = \frac{d}{dx}\left( 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100} \right)\]
\[ = \frac{d}{dx}\left( 1 \right) - \frac{d}{dx}\left( x \right) + \frac{d}{dx}\left( x^2 \right) - \frac{d}{dx}\left( x^3 \right) + . . . - \frac{d}{dx}\left( x^{99} \right) + \frac{d}{dx}\left( x^{100} \right)\]
\[ = 0 - 1 + 2x - 3 x^2 + . . . - 99 x^{98} + 100 x^{99} \]
\[ = - 1 + 2x - 3 x^2 + . . . - 99 x^{98} + 100 x^{99}\]

Putting x = 1, we get

\[f'\left( 1 \right) = - 1 + 2 - 3 + . . . - 99 + 100\]
\[ = \left( - 1 + 2 \right) + \left( - 3 + 4 \right) + \left( - 5 + 6 \right) + . . . + \left( - 99 + 100 \right)\]
\[ = 1 + 1 + 1 + . . . + 1 \left( 50 \text{ terms } \right)\]
\[ = 50\]

Hence, the correct answer is option (d).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.7 [पृष्ठ ४८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.7 | Q 4 | पृष्ठ ४८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


\[\frac{x^2 + 1}{x}\]


\[\frac{x + 1}{x + 2}\]


\[\frac{1}{\sqrt{3 - x}}\]


\[\sqrt{2 x^2 + 1}\]


\[\frac{2x + 3}{x - 2}\] 


Differentiate of the following from first principle:

(−x)−1


Differentiate  of the following from first principle:

 x sin x


Differentiate of the following from first principle:

 x cos x


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


x4 − 2 sin x + 3 cos x


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 


x2 sin x log 


(x sin x + cos x) (x cos x − sin x


x−3 (5 + 3x


(ax + b) (a + d)2


\[\frac{x \tan x}{\sec x + \tan x}\]


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{3^x}{x + \tan x}\] 


\[\frac{x + \cos x}{\tan x}\] 


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


(ax2 + cot x)(p + q cos x)


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×