मराठी

P If F (X) = Log X 2 Write the Value of F' (X). - Mathematics

Advertisements
Advertisements

प्रश्न

If f (x) =  \[\log_{x_2}\]write the value of f' (x). 

उत्तर

\[f(x) = \log_{x^2} x^3 \]
\[ = \frac{\log x^3}{\log x^2} (\text{ Change of base property })\]
\[ = \frac{3 \log x}{2 \log x}\]
\[ = \frac{3}{2}\]
\[f'\left( x \right) = 0 (\text{ Since } \frac{3}{2} \text{ is a constant })\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.6 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.6 | Q 14 | पृष्ठ ४७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x at x = 1.


Find the derivative of `2x - 3/4`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of the following function at the indicated point:


k xn


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


Differentiate each of the following from first principle:

\[3^{x^2}\]


\[\sqrt{\tan x}\]


3x + x3 + 33


ex log a + ea long x + ea log a


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  


xn tan 


(x3 + x2 + 1) sin 


sin x cos x


x5 ex + x6 log 


(1 − 2 tan x) (5 + 4 sin x)


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


x5 (3 − 6x−9


x4 (3 − 4x−5)


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{e^x}{1 + x^2}\] 


\[\frac{x \tan x}{\sec x + \tan x}\]


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{x + \cos x}{\tan x}\] 


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×