मराठी

2 X − 1 X 2 + 1 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{2x - 1}{x^2 + 1}\] 

उत्तर

\[\text{ Let u } = 2x - 1; v = x^2 + 1; \]
\[\text{ Then }, u' = 2; v' = 2x\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{2x - 1}{x^2 + 1} \right) = \frac{\left( x^2 + 1 \right)2 - \left( 2x - 1 \right)2x}{( x^2 + 1 )^2}\]
\[ = \frac{2 x^2 + 2 - 4 x^2 + 2x}{( x^2 + 1 )^2}\]
\[ = \frac{- 2 x^2 + 2x + 2}{( x^2 + 1 )^2}\]
\[ = \frac{2\left( 1 + x - x^2 \right)}{( x^2 + 1 )^2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.5 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.5 | Q 2 | पृष्ठ ४४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of `2x - 3/4`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of f (x) = 99x at x = 100 


Find the derivative of the following function at the indicated point:


(x + 2)3


 (x2 + 1) (x − 5)


Differentiate  of the following from first principle:

e3x


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle:

x2 e


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


Differentiate each of the following from first principle:

\[3^{x^2}\]


\[\tan \sqrt{x}\]


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


x3 e


x5 ex + x6 log 


(x sin x + cos x) (x cos x − sin x


\[e^x \log \sqrt{x} \tan x\] 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


(ax + b)n (cx d)


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


\[\frac{ax + b}{p x^2 + qx + r}\] 


\[\frac{1}{a x^2 + bx + c}\] 


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


(ax2 + cot x)(p + q cos x)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×