मराठी

tan √ x - Mathematics

Advertisements
Advertisements

प्रश्न

\[\tan \sqrt{x}\]

उत्तर

\[Let f(x) = \tan\sqrt{x}\]
\[\text{ Thus, we have }: \]
\[(x + h) = \tan\sqrt{x + h}\]
\[\frac{d}{dx}(f(x)) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}\]
\[ = \lim_{h \to 0} \frac{\tan\sqrt{x + h} - \tan\sqrt{x}}{h}\]
\[ = \lim_{h \to 0} \frac{\sin \left( \sqrt{x + h} - \sqrt{x} \right)}{h \cos\sqrt{x + h} \cos \sqrt{x}} \left[ \because \tan A - \tan B = \frac{\sin(A - B)}{\cos A \cos B} \right] \]
\[ = \lim_{h \to 0} \frac{\sin \left( \sqrt{x + h} - \sqrt{x} \right)}{\left( x + h - x \right) \cos\sqrt{x + h} \cos \sqrt{x}} \]
\[ = \lim_{h \to 0} \frac{\sin \left( \sqrt{x + h} - \sqrt{x} \right)}{\left( \sqrt{x + h} - \sqrt{x} \right)\left( \sqrt{x + h} - \sqrt{x} \right)\cos\sqrt{x + h} \cos \sqrt{x}}\]
\[ = \lim_{h \to 0} \frac{\sin \left( \sqrt{x + h} - \sqrt{x} \right)}{\left( \sqrt{x + h} - \sqrt{x} \right)} . \lim_{h \to 0} \frac{1}{\left( \sqrt{x + h} + \sqrt{x} \right)\cos\sqrt{x + h}\cos\sqrt{x}} \left[ \because \lim_{h \to 0} \frac{\sin\left( \sqrt{x + h} - \sqrt{x} \right)}{\sqrt{x + h} - \sqrt{x}} = 1 \right]\]
\[ = 1 \times \frac{1}{2\sqrt{x}\cos\sqrt{x}\cos\sqrt{x}}\]
\[ = \frac{1}{2\sqrt{x}} \sec^2 \sqrt{x}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.2 | Q 5.3 | पृष्ठ २६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of f (x) = 99x at x = 100 


Find the derivative of (x) = tan x at x = 0 


\[\frac{1}{\sqrt{x}}\]


\[\frac{x^2 + 1}{x}\]


\[\frac{x^2 - 1}{x}\]


\[\frac{x + 2}{3x + 5}\]


k xn


\[\frac{1}{\sqrt{3 - x}}\]


 x2 + x + 3


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle: 

sin x + cos x


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


tan (2x + 1) 


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


x3 e


(x3 + x2 + 1) sin 


sin x cos x


(1 − 2 tan x) (5 + 4 sin x)


sin2 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


(ax + b) (a + d)2


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{x \tan x}{\sec x + \tan x}\]


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{ax + b}{p x^2 + qx + r}\] 


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


Find the derivative of 2x4 + x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×