Advertisements
Advertisements
प्रश्न
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
उत्तर
\[\text{ Case } 1: x>0\]
\[\left| x \right| = x . . . \left( 1 \right)\]
\[\frac{d}{dx}\left( \log \left| x \right| \right) = \log x\]
\[ = \frac{1}{x}\]
\[ = \frac{1}{\left| x \right|} (\text{ from } (1))\]
\[Case 2:x<0\]
\[\left| x \right| = - x . . . \left( 2 \right)\]
\[\frac{d}{dx}\left( \log \left| x \right| \right) = \log \left( - x \right)\]
\[ = \frac{1}{- x}\]
\[ = \frac{1}{\left| x \right|} (\text{ from } (2))\]
\[\text{ From case } (1) \text{ and case }(2),\]
\[\frac{d}{dx}\left( \log \left| x \right| \right) = \frac{1}{\left| x \right|}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of 99x at x = 100.
Find the derivative of x at x = 1.
Find the derivative of x5 (3 – 6x–9).
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
\[\frac{1}{\sqrt{x}}\]
k xn
(x2 + 1) (x − 5)
\[\sqrt{2 x^2 + 1}\]
Differentiate of the following from first principle:
− x
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
Differentiate each of the following from first principle:
\[3^{x^2}\]
\[\cos \sqrt{x}\]
\[\tan \sqrt{x}\]
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
x3 ex
x2 ex log x
(ax + b) (a + d)2
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
\[\frac{1}{a x^2 + bx + c}\]
(ax2 + cot x)(p + q cos x)