Advertisements
Advertisements
प्रश्न
\[\frac{1 + 3^x}{1 - 3^x}\]
उत्तर
\[\text{ Let } u = 1 + 3^x ; v = 1 - 3^x \]
\[\text{ Then }, u' = 3^x \log 3; v' = - 3^x \log 3\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{1 + 3^x}{1 - 3^x} \right) = \frac{\left( 1 - 3^x \right) 3^x \log 3 - \left( 1 + 3^x \right)\left( - 3^x \log 3 \right)}{\left( 1 - 3^x \right)^2}\]
\[ = \frac{3^x \log 3 - 3^{2x} \log 3 + 3^x \log 3 + 3^{2x} \log 3}{\left( 1 - 3^x \right)^2}\]
\[ = \frac{2 . 3^x \log 3}{\left( 1 - 3^x \right)^2}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x2 – 2 at x = 10.
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of x–3 (5 + 3x).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of f (x) x at x = 1
\[\frac{x + 1}{x + 2}\]
Differentiate of the following from first principle:
x cos x
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
\[\sin \sqrt{2x}\]
(2x2 + 1) (3x + 2)
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
xn tan x
\[\frac{2^x \cot x}{\sqrt{x}}\]
x2 sin x log x
logx2 x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
(ax + b)n (cx + d)n
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
\[\frac{x + \cos x}{\tan x}\]
\[\frac{1}{a x^2 + bx + c}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
Find the derivative of x2 cosx.