मराठी

Mark the Correct Alternative in of the Following: If F ( X ) = 1 + X + X 2 2 + . . . + X 100 100 Then F ′ ( 1 ) is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 

पर्याय

  • \[\frac{1}{100}\] 

  • 100         

  • 50        

MCQ

उत्तर

\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] 

Differentiating both sides with respect to x, we get 

\[f'\left( x \right) = \frac{d}{dx}\left( 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100} \right)\]
\[ = \frac{d}{dx}\left( 1 \right) + \frac{d}{dx}\left( x \right) + \frac{d}{dx}\left( \frac{x^2}{2} \right) + . . . + \frac{d}{dx}\left( \frac{x^{100}}{100} \right)\]
\[ = \frac{d}{dx}\left( 1 \right) + \frac{d}{dx}\left( x \right) + \frac{1}{2}\frac{d}{dx}\left( x^2 \right) + . . . + \frac{1}{100}\frac{d}{dx}\left( x^{100} \right)\]
\[ = 0 + 1 + \frac{1}{2} \times 2x + . . . + \frac{1}{100} \times 100 x^{99} \left( y = x^n \Rightarrow \frac{dy}{dx} = n x^{n - 1} \right) \]
\[ = 1 + x + x^2 + . . . + x^{99}\]

Putting x = 1, we get

\[f'\left( 1 \right) = 1 + 1 + 1 + . . . + 1 \left( 100 \text{ terms } \right)\]
\[ = 100\]

Hence, the correct answer is option (b).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.7 [पृष्ठ ४८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.7 | Q 8 | पृष्ठ ४८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`4sqrtx - 2`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

cosec x cot x


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


\[\frac{2}{x}\]


\[\frac{1}{x^3}\]


\[\frac{1}{\sqrt{3 - x}}\]


Differentiate each of the following from first principle:

ex


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


\[\tan \sqrt{x}\]


\[\tan \sqrt{x}\] 


3x + x3 + 33


\[\frac{2 x^2 + 3x + 4}{x}\] 


\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  


(1 +x2) cos x


(2x2 − 3) sin 


x5 (3 − 6x−9


x4 (3 − 4x−5)


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{x \tan x}{\sec x + \tan x}\]


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{3^x}{x + \tan x}\] 


\[\frac{p x^2 + qx + r}{ax + b}\]


\[\frac{1}{a x^2 + bx + c}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]


(ax2 + cot x)(p + q cos x)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×