Advertisements
Advertisements
प्रश्न
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to
पर्याय
\[\frac{1}{100}\]
100
50
0
उत्तर
\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\]
Differentiating both sides with respect to x, we get
\[f'\left( x \right) = \frac{d}{dx}\left( 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100} \right)\]
\[ = \frac{d}{dx}\left( 1 \right) + \frac{d}{dx}\left( x \right) + \frac{d}{dx}\left( \frac{x^2}{2} \right) + . . . + \frac{d}{dx}\left( \frac{x^{100}}{100} \right)\]
\[ = \frac{d}{dx}\left( 1 \right) + \frac{d}{dx}\left( x \right) + \frac{1}{2}\frac{d}{dx}\left( x^2 \right) + . . . + \frac{1}{100}\frac{d}{dx}\left( x^{100} \right)\]
\[ = 0 + 1 + \frac{1}{2} \times 2x + . . . + \frac{1}{100} \times 100 x^{99} \left( y = x^n \Rightarrow \frac{dy}{dx} = n x^{n - 1} \right) \]
\[ = 1 + x + x^2 + . . . + x^{99}\]
Putting x = 1, we get
\[f'\left( 1 \right) = 1 + 1 + 1 + . . . + 1 \left( 100 \text{ terms } \right)\]
\[ = 100\]
Hence, the correct answer is option (b).
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of f (x) = x2 − 2 at x = 10
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
\[\frac{2}{x}\]
\[\frac{1}{x^3}\]
\[\frac{1}{\sqrt{3 - x}}\]
Differentiate each of the following from first principle:
e−x
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
\[\tan \sqrt{x}\]
\[\tan \sqrt{x}\]
3x + x3 + 33
\[\frac{2 x^2 + 3x + 4}{x}\]
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
(1 +x2) cos x
(2x2 − 3) sin x
x5 (3 − 6x−9)
x−4 (3 − 4x−5)
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{x \tan x}{\sec x + \tan x}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
\[\frac{1}{a x^2 + bx + c}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
(ax2 + cot x)(p + q cos x)