Advertisements
Advertisements
प्रश्न
x−4 (3 − 4x−5)
उत्तर
\[\text{ Let } u = x^{- 4} ; v = 3 - 4 x^{- 5} \]
\[\text{ Then }, u' = - 4 x^{- 5} ; v' = 20 x^{- 6} \]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uv \right) = uv' + vu'\]
\[\frac{d}{dx}\left[ x^{- 4} \left( 3 - 4 x^{- 5} \right) \right] = x^{- 4} \left( 20 x^{- 6} \right) + \left( 3 - 4 x^{- 5} \right)\left( - 4 x^{- 5} \right)\]
\[ = 20 x^{- 10} - 12 x^{- 5} + 16 x^{- 10} \]
\[ = - 12 x^{- 5} + 36 x^{- 10}\]
APPEARS IN
संबंधित प्रश्न
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of `2x - 3/4`
Find the derivative of x5 (3 – 6x–9).
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
Find the derivative of f (x) = 3x at x = 2
Find the derivative of f (x) = 99x at x = 100
Find the derivative of f (x) = cos x at x = 0
\[\frac{x + 2}{3x + 5}\]
k xn
Differentiate each of the following from first principle:
e−x
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
Differentiate each of the following from first principle:
x2 ex
Differentiate each of the following from first principle:
\[3^{x^2}\]
\[\sin \sqrt{2x}\]
\[\tan \sqrt{x}\]
\[\frac{2 x^2 + 3x + 4}{x}\]
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
cos (x + a)
Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.
xn loga x
\[e^x \log \sqrt{x} \tan x\]
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
(ax + b)n (cx + d)n
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{x \tan x}{\sec x + \tan x}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to
Find the derivative of f(x) = tan(ax + b), by first principle.