Advertisements
Advertisements
प्रश्न
Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.
उत्तर
\[ = \frac{d}{dx}\left( x^4 - 2 x^3 + 3 x^2 + x + 5 \right)\]
\[ = \frac{d}{dx}\left( x^4 \right) - 2\frac{d}{dx}\left( x^3 \right) + 3\frac{d}{dx}\left( x^2 \right) + \frac{d}{dx}\left( x \right) + \frac{d}{dx}\left( 5 \right)\]
\[ = 4 x^3 - 2\left( 3 x^2 \right) + 3\left( 2x \right) + 1 + 0\]
\[ = 4 x^3 - 6 x^2 + 6x + 1\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x at x = 1.
Find the derivative of x–3 (5 + 3x).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
\[\frac{2}{x}\]
\[\frac{x + 1}{x + 2}\]
Differentiate of the following from first principle:
eax + b
Differentiate of the following from first principle:
− x
Differentiate of the following from first principle:
x sin x
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
x2 sin x
tan (2x + 1)
x4 − 2 sin x + 3 cos x
3x + x3 + 33
ex log a + ea long x + ea log a
log3 x + 3 loge x + 2 tan x
2 sec x + 3 cot x − 4 tan x
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
x2 ex log x
x4 (5 sin x − 3 cos x)
(2x2 − 3) sin x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
(ax + b)n (cx + d)n
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
(ax2 + cot x)(p + q cos x)