मराठी

Find the Rate at Which the Function F (X) = X4 − 2x3 + 3x2 + X + 5 Changes with Respect to X. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.

उत्तर

\[\text{ Rate } =f'(x)\]
\[ = \frac{d}{dx}\left( x^4 - 2 x^3 + 3 x^2 + x + 5 \right)\]
\[ = \frac{d}{dx}\left( x^4 \right) - 2\frac{d}{dx}\left( x^3 \right) + 3\frac{d}{dx}\left( x^2 \right) + \frac{d}{dx}\left( x \right) + \frac{d}{dx}\left( 5 \right)\]
\[ = 4 x^3 - 2\left( 3 x^2 \right) + 3\left( 2x \right) + 1 + 0\]
\[ = 4 x^3 - 6 x^2 + 6x + 1\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.3 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.3 | Q 23 | पृष्ठ ३४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x at x = 1.


Find the derivative of x–3 (5 + 3x).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


\[\frac{2}{x}\]


\[\frac{x + 1}{x + 2}\]


Differentiate  of the following from first principle:

 eax + b


Differentiate  of the following from first principle: 

− x


Differentiate  of the following from first principle:

 x sin x


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle:

 x2 sin x


tan (2x + 1) 


x4 − 2 sin x + 3 cos x


3x + x3 + 33


ex log a + ea long x + ea log a


 log3 x + 3 loge x + 2 tan x


2 sec x + 3 cot x − 4 tan x


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


x2 ex log 


x4 (5 sin x − 3 cos x)


(2x2 − 3) sin 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


(ax + b)n (cx d)


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{1 + \log x}{1 - \log x}\] 


\[\frac{ax + b}{p x^2 + qx + r}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


(ax2 + cot x)(p + q cos x)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×