मराठी

If Y = 2 X 9 3 − 5 7 X 7 + 6 X 3 − X , Find D Y D X a T X = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 

उत्तर

\[\frac{dy}{dx} = \frac{d}{dx}\left( \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x \right)\]
\[ = \frac{2}{3}\frac{d}{dx}\left( x^9 \right) - \frac{5}{7}\frac{d}{dx}\left( x^7 \right) + 6\frac{d}{dx}\left( x^3 \right) - \frac{d}{dx}\left( x \right)\]
\[ = \frac{2}{3}\left( 9 x^8 \right) - \frac{5}{7}\left( 7 x^6 \right) + 6\left( 3 x^2 \right) - 1\]
\[ = 6 x^8 - 5 x^6 + 18 x^2 - 1\]
\[\frac{dy}{dx} at x = 1:\]
\[6 \left( 1 \right)^8 - 5 \left( 1 \right)^6 + 18 \left( 1 \right)^2 - 1\]
\[ = 6 - 5 + 18 - 1\]
\[ = 18\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.3 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.3 | Q 24 | पृष्ठ ३४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of `2x - 3/4`


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of f (x) = cos x at x = 0


Differentiate  of the following from first principle:

e3x


Differentiate  of the following from first principle:

sin (x + 1)


\[\sqrt{\tan x}\]


x4 − 2 sin x + 3 cos x


ex log a + ea long x + ea log a


(2x2 + 1) (3x + 2) 


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


2 sec x + 3 cot x − 4 tan x


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


(x sin x + cos x) (x cos x − sin x


(1 − 2 tan x) (5 + 4 sin x)


x−3 (5 + 3x


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


(ax + b) (a + d)2


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{a + b \sin x}{c + d \cos x}\] 


\[\frac{x}{\sin^n x}\]


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 


Find the derivative of x2 cosx.


(ax2 + cot x)(p + q cos x)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×