Advertisements
Advertisements
प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
उत्तर
∵ (uv)' = u'v + uv'
∴ `d/dx[x^4(5 sinx - 3cosx)] = (d/dx x^4)(5sinx - 3cosx) + x^4 d/dx(5 sinx - 3 cosx)`
= 4x3 (5 sin x − 3 cos x) + x4 [5 cos x + 3 sin x]
= 20 x3 sin x - 12x3 cos x + 5x4 cos x + 3x4 sin x
= x3 sin x (20 + 3x) + x3 cos x (5x - 12)
APPEARS IN
संबंधित प्रश्न
Find the derivative of x–3 (5 + 3x).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
k xn
x2 + x + 3
(x2 + 1) (x − 5)
Differentiate of the following from first principle:
− x
Differentiate of the following from first principle:
sin (x + 1)
Differentiate of the following from first principle:
x cos x
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
\[\tan \sqrt{x}\]
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
xn tan x
sin x cos x
\[\frac{2^x \cot x}{\sqrt{x}}\]
x5 ex + x6 log x
logx2 x
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
x4 (5 sin x − 3 cos x)
(2x2 − 3) sin x
x−4 (3 − 4x−5)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{x \tan x}{\sec x + \tan x}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{x^5 - \cos x}{\sin x}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
(ax2 + cot x)(p + q cos x)