मराठी

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): x4 (5 sin x – 3 cos x) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)

बेरीज

उत्तर

∵ (uv)' = u'v + uv'

∴ `d/dx[x^4(5 sinx - 3cosx)] = (d/dx x^4)(5sinx - 3cosx) + x^4 d/dx(5 sinx - 3 cosx)`

= 4x3 (5 sin x − 3 cos x) + x4 [5 cos x + 3 sin x]

= 20 x3 sin x - 12x3 cos x + 5x4 cos x + 3x4 sin x

= x3 sin x (20 + 3x) + x3 cos x (5x - 12)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Limits and Derivatives - Miscellaneous Exercise [पृष्ठ ३१८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 13 Limits and Derivatives
Miscellaneous Exercise | Q 22 | पृष्ठ ३१८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x–3 (5 + 3x).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

cosec x cot x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


k xn


 x2 + x + 3


 (x2 + 1) (x − 5)


Differentiate  of the following from first principle: 

− x


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate of the following from first principle:

 x cos x


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


\[\tan \sqrt{x}\]


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


xn tan 


sin x cos x


\[\frac{2^x \cot x}{\sqrt{x}}\] 


x5 ex + x6 log 


logx2 x


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


x4 (5 sin x − 3 cos x)


(2x2 − 3) sin 


x4 (3 − 4x−5)


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{x \tan x}{\sec x + \tan x}\]


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{3^x}{x + \tan x}\] 


\[\frac{1 + \log x}{1 - \log x}\] 


\[\frac{x^5 - \cos x}{\sin x}\] 


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


(ax2 + cot x)(p + q cos x)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×