मराठी

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): sin(x+a)cosx - Mathematics

Advertisements
Advertisements

प्रश्न

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`

बेरीज

उत्तर

Let f(x) = `(sin (x + a))/(cos x)`

By quotient rule,

f'(x) = `(cos x d/dx [sin (x + a)] - sin(x + a) d/dx cos x)/cos^2 x`

f'(x) = `(cos x d/dx [sin (x + a)] - sin(x + a) (-sin x))/cos^2 x`    ...(i)

Let g(x) = sin (x + a) Accordingly. g(x + h) = sin (x + h + a)

By first principle,

g'(x) = `lim_(h->0) (g(x + h) - g(x))/h`

= `lim_(h->0)1/h [sin (x + h + a) -sin (x + a)]`

= `lim_(h->0)1/h [2 cos ((x + h + a + x + a)/2) sin  ((x + h + a - x - a)/2)]`

= `lim_(h->0)1/h [2 cos ((2x + 2a + h)/2) sin(h/2)]`

= `lim_(h->0) [cos ((2x + 2a + h)/2) {sin (h/2)/(h/2)}]`

= `lim_(h->0) cos ((2x + 2a + h)/2) lim_(h->0){sin (h/2)/(h/2)}`     `["As" h->0=>h/2->0]`

= `(cos  (2x + 2a)/2) xx 1`          `[lim_(h->0) (sin h)/h = 1]`

= cos (x + a)

From (i) and (ii) we obtain

f'(x) = `(cosx. cos (x + a) + sin x sin (x + a))/cos^2x`

= `(cos (x + a - x))/cos^2 x`

= `(cos a)/cos^2 x`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Limits and Derivatives - Miscellaneous Exercise [पृष्ठ ३१८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 13 Limits and Derivatives
Miscellaneous Exercise | Q 21 | पृष्ठ ३१८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of x5 (3 – 6x–9).


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of f (x) = 99x at x = 100 


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{x + 1}{x + 2}\]


\[\frac{x + 2}{3x + 5}\]


k xn


\[\frac{1}{\sqrt{3 - x}}\]


 x2 + x + 3


 (x2 + 1) (x − 5)


\[\sqrt{2 x^2 + 1}\]


Differentiate of the following from first principle:

(−x)−1


Differentiate of the following from first principle:

 x cos x


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each of the following from first principle:

x2 e


\[\tan \sqrt{x}\]


x4 − 2 sin x + 3 cos x


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


cos (x + a)


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


x4 (5 sin x − 3 cos x)


x4 (3 − 4x−5)


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{{10}^x}{\sin x}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{3^x}{x + \tan x}\] 


\[\frac{x}{\sin^n x}\]


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×