English

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): sin(x+a)cosx - Mathematics

Advertisements
Advertisements

Question

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`

Sum

Solution

Let f(x) = `(sin (x + a))/(cos x)`

By quotient rule,

f'(x) = `(cos x d/dx [sin (x + a)] - sin(x + a) d/dx cos x)/cos^2 x`

f'(x) = `(cos x d/dx [sin (x + a)] - sin(x + a) (-sin x))/cos^2 x`    ...(i)

Let g(x) = sin (x + a) Accordingly. g(x + h) = sin (x + h + a)

By first principle,

g'(x) = `lim_(h->0) (g(x + h) - g(x))/h`

= `lim_(h->0)1/h [sin (x + h + a) -sin (x + a)]`

= `lim_(h->0)1/h [2 cos ((x + h + a + x + a)/2) sin  ((x + h + a - x - a)/2)]`

= `lim_(h->0)1/h [2 cos ((2x + 2a + h)/2) sin(h/2)]`

= `lim_(h->0) [cos ((2x + 2a + h)/2) {sin (h/2)/(h/2)}]`

= `lim_(h->0) cos ((2x + 2a + h)/2) lim_(h->0){sin (h/2)/(h/2)}`     `["As" h->0=>h/2->0]`

= `(cos  (2x + 2a)/2) xx 1`          `[lim_(h->0) (sin h)/h = 1]`

= cos (x + a)

From (i) and (ii) we obtain

f'(x) = `(cosx. cos (x + a) + sin x sin (x + a))/cos^2x`

= `(cos (x + a - x))/cos^2 x`

= `(cos a)/cos^2 x`

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Miscellaneous Exercise [Page 318]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Miscellaneous Exercise | Q 21 | Page 318

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x2 – 2 at x = 10.


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`4sqrtx - 2`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


\[\frac{1}{\sqrt{x}}\]


k xn


Differentiate  of the following from first principle:

e3x


Differentiate  of the following from first principle:

 eax + b


Differentiate  of the following from first principle: 

− x


Differentiate of the following from first principle:

(−x)−1


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate  of the following from first principle:

 x sin x


Differentiate of the following from first principle:

 x cos x


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


\[\cos \sqrt{x}\]


ex log a + ea long x + ea log a


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 


cos (x + a)


\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


x3 e


xn tan 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


x5 (3 − 6x−9


(ax + b)n (cx d)


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{{10}^x}{\sin x}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×