Advertisements
Advertisements
Question
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Solution
Let f(x) = `(sin (x + a))/(cos x)`
By quotient rule,
f'(x) = `(cos x d/dx [sin (x + a)] - sin(x + a) d/dx cos x)/cos^2 x`
f'(x) = `(cos x d/dx [sin (x + a)] - sin(x + a) (-sin x))/cos^2 x` ...(i)
Let g(x) = sin (x + a) Accordingly. g(x + h) = sin (x + h + a)
By first principle,
g'(x) = `lim_(h->0) (g(x + h) - g(x))/h`
= `lim_(h->0)1/h [sin (x + h + a) -sin (x + a)]`
= `lim_(h->0)1/h [2 cos ((x + h + a + x + a)/2) sin ((x + h + a - x - a)/2)]`
= `lim_(h->0)1/h [2 cos ((2x + 2a + h)/2) sin(h/2)]`
= `lim_(h->0) [cos ((2x + 2a + h)/2) {sin (h/2)/(h/2)}]`
= `lim_(h->0) cos ((2x + 2a + h)/2) lim_(h->0){sin (h/2)/(h/2)}` `["As" h->0=>h/2->0]`
= `(cos (2x + 2a)/2) xx 1` `[lim_(h->0) (sin h)/h = 1]`
= cos (x + a)
From (i) and (ii) we obtain
f'(x) = `(cosx. cos (x + a) + sin x sin (x + a))/cos^2x`
= `(cos (x + a - x))/cos^2 x`
= `(cos a)/cos^2 x`
APPEARS IN
RELATED QUESTIONS
Find the derivative of x2 – 2 at x = 10.
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
\[\frac{1}{\sqrt{x}}\]
k xn
Differentiate of the following from first principle:
e3x
Differentiate of the following from first principle:
eax + b
Differentiate of the following from first principle:
− x
Differentiate of the following from first principle:
(−x)−1
Differentiate of the following from first principle:
sin (x + 1)
Differentiate of the following from first principle:
x sin x
Differentiate of the following from first principle:
x cos x
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
\[\cos \sqrt{x}\]
ex log a + ea long x + ea log a
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
cos (x + a)
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
x3 ex
xn tan x
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
x5 (3 − 6x−9)
(ax + b)n (cx + d)n
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{{10}^x}{\sin x}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to