English

( √ X + 1 √ X ) 3 - Mathematics

Advertisements
Advertisements

Question

\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 

Solution

\[\frac{d}{dx} \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3 \]
\[ = \frac{d}{dx}\left[ \left( \sqrt{x} \right)^3 + 3 \left( \sqrt{x} \right)^2 \left( \frac{1}{\sqrt{x}} \right) + 3\left( \sqrt{x} \right) \left( \frac{1}{\sqrt{x}} \right)^2 + \left( \frac{1}{\sqrt{x}} \right)^3 \right]\]
\[ = \frac{d}{dx}\left( x^\frac{3}{2} \right) + 3\frac{d}{dx}\left( x^\frac{1}{2} \right) + 3\frac{d}{dx}\left( x^\frac{- 1}{2} \right) + \frac{d}{dx}\left( x^\frac{- 3}{2} \right)\]
\[ = \frac{3}{2} x^\frac{3}{2} - 1 + 3 . \frac{1}{2} x^\frac{1}{2} - 1 + 3\left( \frac{- 1}{2} \right) x^\frac{- 1}{2} - 1 + \left( \frac{- 3}{2} \right) x^\frac{- 3}{2} - 1 \]
\[ = \frac{3}{2} x^\frac{1}{2} + \frac{3}{2} x^\frac{- 1}{2} - \frac{3}{2} x^\frac{- 3}{2} - \frac{3}{2} x^\frac{- 5}{2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.3 [Page 34]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.3 | Q 8 | Page 34

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of `2x - 3/4`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


 (x2 + 1) (x − 5)


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle: 

sin x + cos x


tan (2x + 1) 


 tan 2


\[\tan \sqrt{x}\]


\[\tan \sqrt{x}\] 


3x + x3 + 33


2 sec x + 3 cot x − 4 tan x


\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 


\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

xn tan 


(1 − 2 tan x) (5 + 4 sin x)


(1 +x2) cos x


sin2 


x4 (5 sin x − 3 cos x)


x−3 (5 + 3x


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


(ax + b)n (cx d)


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{e^x}{1 + x^2}\] 


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{3^x}{x + \tan x}\] 


\[\frac{x + \cos x}{\tan x}\] 


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Find the derivative of 2x4 + x.


(ax2 + cot x)(p + q cos x)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×