Advertisements
Advertisements
Question
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
Solution
\[\frac{d}{dx} \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3 \]
\[ = \frac{d}{dx}\left[ \left( \sqrt{x} \right)^3 + 3 \left( \sqrt{x} \right)^2 \left( \frac{1}{\sqrt{x}} \right) + 3\left( \sqrt{x} \right) \left( \frac{1}{\sqrt{x}} \right)^2 + \left( \frac{1}{\sqrt{x}} \right)^3 \right]\]
\[ = \frac{d}{dx}\left( x^\frac{3}{2} \right) + 3\frac{d}{dx}\left( x^\frac{1}{2} \right) + 3\frac{d}{dx}\left( x^\frac{- 1}{2} \right) + \frac{d}{dx}\left( x^\frac{- 3}{2} \right)\]
\[ = \frac{3}{2} x^\frac{3}{2} - 1 + 3 . \frac{1}{2} x^\frac{1}{2} - 1 + 3\left( \frac{- 1}{2} \right) x^\frac{- 1}{2} - 1 + \left( \frac{- 3}{2} \right) x^\frac{- 3}{2} - 1 \]
\[ = \frac{3}{2} x^\frac{1}{2} + \frac{3}{2} x^\frac{- 1}{2} - \frac{3}{2} x^\frac{- 3}{2} - \frac{3}{2} x^\frac{- 5}{2}\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of `2x - 3/4`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
(x2 + 1) (x − 5)
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
sin x + cos x
tan (2x + 1)
tan 2x
\[\tan \sqrt{x}\]
\[\tan \sqrt{x}\]
3x + x3 + 33
2 sec x + 3 cot x − 4 tan x
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
xn tan x
(1 − 2 tan x) (5 + 4 sin x)
(1 +x2) cos x
sin2 x
x4 (5 sin x − 3 cos x)
x−3 (5 + 3x)
Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same.
(ax + b)n (cx + d)n
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{e^x}{1 + x^2}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{x + \cos x}{\tan x}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
Find the derivative of 2x4 + x.
(ax2 + cot x)(p + q cos x)