Advertisements
Advertisements
Question
\[\frac{a + \sin x}{1 + a \sin x}\]
Solution
Let us use the quotient rule here.
We have:
u = a + sin x and v =1 + a sin x
u' = cos x and v'=a cos x
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{a + \sin x}{1 + a\sin x} \right) = \frac{(1 + a\sin x)(\cos x) - (a + \sin x)(a\cos x)}{(1 + a\sin x )^2}\]
\[ = \frac{\cos x + a\sin x \cos x - a^2 \cos x - a \sin x \cos x}{(1 + a\sin x )^2}\]
\[ = \frac{\cos x - a^2 \cos x}{(1 + a\sin x )^2}\]
\[ = \frac{(1 - a^2 )\cos x}{(1 + a \sin x )^2}\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of f (x) = 99x at x = 100
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
Differentiate of the following from first principle:
x sin x
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
Differentiate each of the following from first principle:
x2 ex
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
\[\sin \sqrt{2x}\]
3x + x3 + 33
(2x2 + 1) (3x + 2)
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
x2 ex log x
xn tan x
(2x2 − 3) sin x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{x \tan x}{\sec x + \tan x}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
\[\frac{x + \cos x}{\tan x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
Write the derivative of f (x) = 3 |2 + x| at x = −3.
If f (x) = \[\log_{x_2}\]write the value of f' (x).
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Find the derivative of 2x4 + x.
Find the derivative of x2 cosx.
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.