English

X Tan X Sec X + Tan X - Mathematics

Advertisements
Advertisements

Question

\[\frac{x \tan x}{\sec x + \tan x}\]

Solution

\[\text{ Let } u = x \tan x; v = \sec x + \tan x\]
\[\text{ Then }, u' = x \sec^2 x + \tan x; v' = \sec x \tan x + \sec^2 x\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{x\tan x}{\sec x + \tan x} \right) = \frac{\left( \sec x + \tan x \right)\left( x \sec^2 x + \tan x \right) - x \tan x\left( \sec x \tan x + \sec^2 x \right)}{\left( \sec x + \tan x \right)^2}\]
\[ = \frac{x \sec^3 x + x \sec^2 x\tan x + \sec x \tan x + \tan^2 x - x \sec x \tan^2 x - x \tan x \sec^2 x}{\left( \sec x + \tan x \right)^2}\]
\[ = \frac{\left( \sec x + \tan x \right)\left( x \sec^2 x + \tan x \right) - x \tan x \sec x\left( \sec x + \tan x \right)}{\left( \sec x + \tan x \right)^2}\]
\[ = \frac{x \sec^2 x + \tan x - x \tan x \sec x}{\sec x + \tan x}\]
\[ = \frac{x \sec x\left( \sec x - \tan x \right) + \tan x}{\sec x + \tan x}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.5 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.5 | Q 10 | Page 44

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of f (x) = cos x at x = 0


\[\frac{1}{\sqrt{3 - x}}\]


 (x2 + 1) (x − 5)


Differentiate  of the following from first principle:

e3x


Differentiate  of the following from first principle:

 eax + b


Differentiate of the following from first principle:

(−x)−1


Differentiate  of the following from first principle:

 x sin x


\[\sin \sqrt{2x}\]


3x + x3 + 33


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 


Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


sin x cos x


x5 ex + x6 log 


logx2 x


\[e^x \log \sqrt{x} \tan x\] 


x3 ex cos 


x5 (3 − 6x−9


x4 (3 − 4x−5)


x−3 (5 + 3x


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{1 + \log x}{1 - \log x}\] 


\[\frac{ax + b}{p x^2 + qx + r}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×