Advertisements
Advertisements
Question
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
Solution
\[\frac{d}{dx}\left[ \left( a_0 x^n \right) + \frac{d}{dx}\left( a_1 x^{n - 1} \right) + \frac{d}{dx}\left( a_2 x^{n - 2} \right) + . . . + a_{n - 1} x + a_n \right]\]
\[ = a_0 \frac{d}{dx}\left( x^n \right) + a_1 \frac{d}{dx}\left( x^{n - 1} \right) + a_2 \frac{d}{dx}\left( x^{n - 2} \right) + . . . + a_{n - 1} \frac{d}{dx}\left( x \right) + \frac{d}{dx}\left( a_n \right)\]
\[ = n a_0 x^{n - 1} + \left( n - 1 \right) a_1 x^{n - 2} + \left( n - 2 \right) a_2 x^{n - 3} + . . . . + a_{n - 1} \left( 1 \right) + 0\]
\[ = n a_0 x^{n - 1} + \left( n - 1 \right) a_1 x^{n - 2} + \left( n - 2 \right) a_2 x^{n - 3} + . . . . + a_{n - 1} \]
\[\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of `2x - 3/4`
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of f (x) x at x = 1
Find the derivative of f (x) = cos x at x = 0
\[\frac{x^2 - 1}{x}\]
\[\frac{x + 1}{x + 2}\]
\[\sqrt{2 x^2 + 1}\]
Differentiate each of the following from first principle:
e−x
tan2 x
x4 − 2 sin x + 3 cos x
3x + x3 + 33
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
cos (x + a)
Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
x2 sin x log x
x5 (3 − 6x−9)
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
\[\frac{x + \cos x}{\tan x}\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
(ax2 + cot x)(p + q cos x)
`(a + b sin x)/(c + d cos x)`