English

X 2 + 1 X + 1 - Mathematics

Advertisements
Advertisements

Question

\[\frac{x^2 + 1}{x + 1}\] 

Solution

\[\text{ Let } u = x^2 + 1; v = x + 1\]
\[\text{ The }n, u' = 2x; v' = 1\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{x^2 + 1}{x + 1} \right) = \frac{\left( x + 1 \right)2x - \left( x^2 + 1 \right)1}{(x + 1 )^2}\]
\[ = \frac{2 x^2 + 2x - x^2 - 1}{(x + 1 )^2}\]
\[ = \frac{x^2 + 2x - 1}{(x + 1 )^2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.5 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.5 | Q 1 | Page 44

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x2 – 2 at x = 10.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`4sqrtx - 2`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of f (x) = cos x at x = 0


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


Find the derivative of the following function at the indicated point:


\[\frac{1}{\sqrt{x}}\]


 x2 + x + 3


(x + 2)3


\[\sqrt{2 x^2 + 1}\]


Differentiate  of the following from first principle:

 eax + b


Differentiate each of the following from first principle: 

sin x + cos x


Differentiate each of the following from first principle:

x2 e


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


(x sin x + cos x ) (ex + x2 log x


sin2 


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{x \tan x}{\sec x + \tan x}\]


\[\frac{{10}^x}{\sin x}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{x}{\sin^n x}\]


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


Find the derivative of f(x) = tan(ax + b), by first principle.


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×