English

2 X + 3 X − 2 - Mathematics

Advertisements
Advertisements

Question

\[\sqrt{2 x^2 + 1}\]

Solution

\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sqrt{2 \left( x + h \right)^2 + 1} - \sqrt{2 x^2 + 1}}{h}\]
\[ = \lim_{h \to 0} \frac{\sqrt{2 x^2 + 2 h^2 + 4xh + 1} - \sqrt{2 x^2 + 1}}{h}\]
\[ = \lim_{h \to 0} \frac{\sqrt{2 x^2 + 2 h^2 + 4xh + 1} - \sqrt{2 x^2 + 1}}{h} \times \frac{\sqrt{2 x^2 + 2 h^2 + 4xh + 1} + \sqrt{2 x^2 + 1}}{\sqrt{2 x^2 + 2 h^2 + 4xh + 1} + \sqrt{2 x^2 + 1}}\]
\[ = \lim_{h \to 0} \frac{2 x^2 + 2 h^2 + 4xh + 1 - 2 x^2 - 1}{h\left( \sqrt{2 x^2 + 2 h^2 + 4xh + 1} + \sqrt{2 x^2 + 1} \right)}\]
\[ = \lim_{h \to 0} \frac{h\left( 2h + 4x \right)}{h\left( \sqrt{2 x^2 + 2 h^2 + 4xh + 1} + \sqrt{2 x^2 + 1} \right)}\]
\[ = \lim_{h \to 0} \frac{\left( 2h + 4x \right)}{\left( \sqrt{2 x^2 + 2 h^2 + 4xh + 1} + \sqrt{2 x^2 + 1} \right)}\]
\[ = \frac{4x}{\sqrt{2 x^2 + 1} + \sqrt{2 x^2 + 1}}\]
\[ = \frac{4x}{2\sqrt{2 x^2 + 1}}\]
\[ = \frac{2x}{\sqrt{2 x^2 + 1}}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.2 [Page 25]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.2 | Q 1.14 | Page 25

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`4sqrtx - 2`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of f (x) = cos x at x = 0


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


Differentiate  of the following from first principle:

e3x


Differentiate  of the following from first principle:

 eax + b


Differentiate  of the following from first principle:

 x sin x


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


Differentiate each of the following from first principle: 

\[e^{x^2 + 1}\]


\[\tan \sqrt{x}\]


x4 − 2 sin x + 3 cos x


3x + x3 + 33


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 


xn tan 


(x sin x + cos x ) (ex + x2 log x


(1 − 2 tan x) (5 + 4 sin x)


x4 (5 sin x − 3 cos x)


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


(ax + b)n (cx d)


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{1 + \log x}{1 - \log x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Find the derivative of 2x4 + x.


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×