English

Find the derivative of x–4 (3 – 4x–5). - Mathematics

Advertisements
Advertisements

Question

Find the derivative of x–4 (3 – 4x–5).

Sum

Solution

Let f(x) = x–4 (3 – 4x–5)

By Leibnitz product rule,

f'(x) = `x^-4 d/(dx) (3 - 4x^-5) + (3 - 4x^-5) d/dx(x^-4)`

= x-4 {0 - 4 (-5) x-5-1} + (3 - 4x-5) (-4) x-4-1

= x-4 (20x-6) + (3 - 4x-5) (-4x-5)

= 20x-10 + 12x-5 + 16x-10

= 36x-10 - 12x-5

= `-12/x^5 + 36/x^10`

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Exercise 13.2 [Page 313]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Exercise 13.2 | Q 9.5 | Page 313

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of 99x at x = 100.


Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

cosec x cot x


Find the derivative of f (x) = cos x at x = 0


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


\[\frac{1}{\sqrt{x}}\]


\[\frac{x^2 - 1}{x}\]


\[\frac{1}{\sqrt{3 - x}}\]


 (x2 + 1) (x − 5)


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle:

 x2 sin x


 tan 2


\[\tan \sqrt{x}\] 


x4 − 2 sin x + 3 cos x


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


x3 sin 


(x sin x + cos x ) (ex + x2 log x


(1 +x2) cos x


\[e^x \log \sqrt{x} \tan x\] 


x4 (5 sin x − 3 cos x)


(2x2 − 3) sin 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{3^x}{x + \tan x}\] 


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


\[\frac{\sec x - 1}{\sec x + 1}\] 


\[\frac{x^5 - \cos x}{\sin x}\] 


\[\frac{x}{\sin^n x}\]


\[\frac{1}{a x^2 + bx + c}\] 


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×