English

E X Log √ X Tan X - Mathematics

Advertisements
Advertisements

Question

\[e^x \log \sqrt{x} \tan x\] 

Solution

\[\text{ Let } u = e^x ; v = \log \sqrt{x}; w = \tan x\]
\[\text{ Then } , u' = e^x ; v' = \frac{1}{\sqrt{x}} \times \frac{1}{2\sqrt{x}} = \frac{1}{2x}; w' = \sec^2 x\]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uvw \right) = u'vw + uv'w + uvw'\]
\[ = e^x \log \sqrt{x}\tan x + e^x \times \frac{1}{2x}\tan x + e^x \log \sqrt{x} \sec^2 x\]
\[ = e^x \left( \log x^\frac{1}{2} . \tan x + \frac{\tan x}{2x} + \log x^\frac{1}{2} . \sec^2 x \right)\]
\[ = e^x \left( \frac{1}{2} \log x . \tan x + \frac{\tan x}{2x} + \frac{1}{2} \log x . \sec^2 x \right)\]
\[ = \frac{e^x}{2}\left( \log x . \tan x + \frac{\tan x}{x} + \log x . \sec^2 x \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.4 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.4 | Q 17 | Page 39

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of x5 (3 – 6x–9).


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of f (xx at x = 1

 


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{1}{x^3}\]


\[\frac{x^2 - 1}{x}\]


\[\sqrt{2 x^2 + 1}\]


\[\frac{2x + 3}{x - 2}\] 


Differentiate  of the following from first principle:

 x sin x


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


\[\tan \sqrt{x}\]


\[\tan \sqrt{x}\] 


x4 − 2 sin x + 3 cos x


\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 


cos (x + a)


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


x5 (3 − 6x−9


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{{10}^x}{\sin x}\] 


\[\frac{1 + \log x}{1 - \log x}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×