Advertisements
Advertisements
Question
\[e^x \log \sqrt{x} \tan x\]
Solution
\[\text{ Let } u = e^x ; v = \log \sqrt{x}; w = \tan x\]
\[\text{ Then } , u' = e^x ; v' = \frac{1}{\sqrt{x}} \times \frac{1}{2\sqrt{x}} = \frac{1}{2x}; w' = \sec^2 x\]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uvw \right) = u'vw + uv'w + uvw'\]
\[ = e^x \log \sqrt{x}\tan x + e^x \times \frac{1}{2x}\tan x + e^x \log \sqrt{x} \sec^2 x\]
\[ = e^x \left( \log x^\frac{1}{2} . \tan x + \frac{\tan x}{2x} + \log x^\frac{1}{2} . \sec^2 x \right)\]
\[ = e^x \left( \frac{1}{2} \log x . \tan x + \frac{\tan x}{2x} + \frac{1}{2} \log x . \sec^2 x \right)\]
\[ = \frac{e^x}{2}\left( \log x . \tan x + \frac{\tan x}{x} + \log x . \sec^2 x \right)\]
APPEARS IN
RELATED QUESTIONS
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of x5 (3 – 6x–9).
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of f (x) x at x = 1
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{1}{x^3}\]
\[\frac{x^2 - 1}{x}\]
\[\sqrt{2 x^2 + 1}\]
\[\frac{2x + 3}{x - 2}\]
Differentiate of the following from first principle:
x sin x
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
\[\tan \sqrt{x}\]
\[\tan \sqrt{x}\]
x4 − 2 sin x + 3 cos x
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
cos (x + a)
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
x5 (3 − 6x−9)
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{1 + \log x}{1 - \log x}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.