Advertisements
Advertisements
Question
\[\frac{2x + 3}{x - 2}\]
Solution
\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{2\left( x + h \right) + 3}{x + h - 2} - \frac{2x + 3}{x - 2}}{h}\]
\[ = \lim_{h \to 0} \frac{\left( 2x + 2h + 3 \right)\left( x - 2 \right) - \left( x + h - 2 \right)\left( 2x + 3 \right)}{h\left( x + h - 2 \right)\left( x - 2 \right)}\]
\[ = \lim_{h \to 0} \frac{2 x^2 + 2xh + 3x - 4x - 4h - 6 - 2 x^2 - 2xh + 4x - 3x - 3h + 6}{h\left( x + h - 2 \right)\left( x - 2 \right)}\]
\[ = \lim_{h \to 0} \frac{- 7h}{h\left( x + h - 2 \right)\left( x - 2 \right)}\]
\[ = \lim_{h \to 0} \frac{- 7}{\left( x + h - 2 \right)\left( x - 2 \right)}\]
\[ = \frac{- 7}{\left( x - 2 \right)\left( x - 2 \right)}\]
\[ = \frac{- 7}{\left( x - 2 \right)^2}\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of `2x - 3/4`
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of f (x) = x2 − 2 at x = 10
Find the derivative of f (x) x at x = 1
\[\frac{x + 1}{x + 2}\]
\[\frac{1}{\sqrt{3 - x}}\]
(x2 + 1) (x − 5)
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
(−x)−1
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate of the following from first principle:
x cos x
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
tan (2x + 1)
x4 − 2 sin x + 3 cos x
(2x2 + 1) (3x + 2)
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
xn tan x
(1 − 2 tan x) (5 + 4 sin x)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
\[\frac{x + \cos x}{\tan x}\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
If f (x) = \[\log_{x_2}\]write the value of f' (x).
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Find the derivative of 2x4 + x.
(ax2 + cot x)(p + q cos x)
`(a + b sin x)/(c + d cos x)`