Advertisements
Advertisements
Question
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
Solution
\[\text{ Let } u = x^2 - x + 1; v = x^2 + x + 1\]
\[\text{ Then }, u' = 2x - 1; v' = 2x + 1\]
\[\text{ By quotient rule },\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{x^2 - x + 1}{x^2 + x + 1} \right) = \frac{\left( x^2 + x + 1 \right)\left( 2x - 1 \right) - \left( x^2 - x + 1 \right)\left( 2x + 1 \right)}{\left( x^2 + x + 1 \right)^2}\]
\[ = \frac{2 x^3 + 2 x^2 + 2x - x^2 - x - 1 - 2 x^3 + 2 x^2 - 2x - x^2 + x - 1}{\left( x^2 + x + 1 \right)^2}\]
\[ = \frac{2 x^2 - 2}{\left( x^2 + x + 1 \right)^2}\]
\[ = \frac{2\left( x^2 - 1 \right)}{\left( x^2 + x + 1 \right)^2}\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of 99x at x = 100.
Find the derivative of x at x = 1.
Find the derivative of x5 (3 – 6x–9).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
\[\frac{2}{x}\]
\[\frac{x + 2}{3x + 5}\]
(x + 2)3
(x2 + 1) (x − 5)
\[\frac{2x + 3}{x - 2}\]
Differentiate of the following from first principle:
− x
Differentiate of the following from first principle:
sin (x + 1)
Differentiate of the following from first principle:
x sin x
\[\cos \sqrt{x}\]
\[\tan \sqrt{x}\]
(2x2 + 1) (3x + 2)
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
x3 sin x
x3 ex
sin x cos x
x3 ex cos x
x4 (5 sin x − 3 cos x)
x−4 (3 − 4x−5)
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
\[\frac{x^5 - \cos x}{\sin x}\]
\[\frac{1}{a x^2 + bx + c}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is
(ax2 + cot x)(p + q cos x)