Advertisements
Advertisements
Question
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
Solution
Let f(x) = `(sec x - 1)/(sec x + 1)`
f(x) = `(1/cos x -1)/(1/cos x +1)`
= `(1 - cos x)/(1 + cos x)`
By quotient rule,
f'(x) = `((1 + cosx)d/dx(1 - cosx)-(1 - cos x)d/dx(1 + cos x))/((1 + cos x^2))`
= `((1 + cos x) (sin x) - (1 - cos x) (-sin x))/((1 + cos x)^2)`
= `(sin x + cos x sin x + sin x - sin x cos x) /(1 + cos x)^2`
= `(2 sin x)/(1 + cos x)^2`
= `(2 sin x)/(1 + 1/sec x)^2 = (2 sin x)/((sec x + 1)^2/(sec^2 x))`
= `(2 sin x sec^2x)/ (secx+1)^2`
= `((2 sin x)/(cos x)sec x)/(sec x + 1)^2`
= `(2sec x tan x)/(sec x + 1)^2`
APPEARS IN
RELATED QUESTIONS
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of f (x) = x2 − 2 at x = 10
Find the derivative of f (x) x at x = 1
Find the derivative of f (x) = tan x at x = 0
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{x^2 + 1}{x}\]
(x + 2)3
(x2 + 1) (x − 5)
Differentiate of the following from first principle:
eax + b
x ex
Differentiate of the following from first principle:
sin (x + 1)
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
x4 − 2 sin x + 3 cos x
ex log a + ea long x + ea log a
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
cos (x + a)
x3 sin x
x3 ex
sin x cos x
(x sin x + cos x) (x cos x − sin x)
(x sin x + cos x ) (ex + x2 log x)
(1 − 2 tan x) (5 + 4 sin x)
(2x2 − 3) sin x
x5 (3 − 6x−9)
x−4 (3 − 4x−5)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
(ax + b)n (cx + d)n
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
Find the derivative of x2 cosx.