English

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): sinx+cosxsinx-cosx - Mathematics

Advertisements
Advertisements

Question

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`

Sum

Solution

Let f(x) = `(sinx + cosx)/(sinx - cosx)`

∴ `f'(x) = ([d/dx(sin x + cos x)] (sin x - cos x) - (sin x +cos x) d/dx (sin x - cos x))/(sin x - cos x)^2`

= `((cos x - sin x)(sin x - cos x) - (sin x + cos x)(cos x + sin x))/(sin x - cos x)^2`

= `(-(cos x - sin x)^2 - (sin x + cos x)^2)/(sin x - cos x)^2`

= `(-(cos^2 x + sin^2 x - 2 cosx sinx) - (cos^2 x + sin^2 x + 2 sin x cos x))/(sin x - cosx)^2`

= `(1 - 2sin xcos x + 1 + 2 cosx sin x)/(sin x - cosx)^2`

= `(-2)/(sin x - cosx)^2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Miscellaneous Exercise [Page 318]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Miscellaneous Exercise | Q 17 | Page 318

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x at x = 1.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of f (xx at x = 1

 


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


\[\frac{1}{\sqrt{x}}\]


\[\frac{x^2 - 1}{x}\]


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate of the following from first principle:

 x cos x


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


tan (2x + 1) 


x4 − 2 sin x + 3 cos x


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


2 sec x + 3 cot x − 4 tan x


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


x3 sin 


(x sin x + cos x ) (ex + x2 log x


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{\sec x - 1}{\sec x + 1}\] 


\[\frac{1}{a x^2 + bx + c}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×