Advertisements
Advertisements
Question
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
Solution
\[\frac{d}{dx}\left( \frac{\left( x^3 + 1 \right)\left( x - 2 \right)}{x^2} \right)\]
\[ = \frac{d}{dx}\left( \frac{x^4 - 2 x^3 + x - 2}{x^2} \right)\]
\[ = \frac{d}{dx}\left( \frac{x^4}{x^2} \right) - 2\frac{d}{dx}\left( \frac{x^3}{x^2} \right) + \frac{d}{dx}\left( \frac{x}{x^2} \right) - \frac{d}{dx}\left( \frac{2}{x^2} \right)\]
\[ = \frac{d}{dx}\left( x^2 \right) - 2\frac{d}{dx}\left( x \right) + \frac{d}{dx}\left( x^{- 1} \right) - 2\frac{d}{dx}\left( x^{- 2} \right)\]
\[ = 2x - 2 - \frac{1}{x^2} - 2\left( - 2 \right) x^{- 3} \]
\[ = 2x - 2 - \frac{1}{x^2} + \frac{4}{x^3}\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of f (x) = x2 − 2 at x = 10
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{1}{\sqrt{3 - x}}\]
x2 + x + 3
(x2 + 1) (x − 5)
(x2 + 1) (x − 5)
Differentiate of the following from first principle:
eax + b
Differentiate of the following from first principle:
sin (x + 1)
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
Differentiate each of the following from first principle:
x2 ex
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
\[\sin \sqrt{2x}\]
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
x5 (3 − 6x−9)
x−4 (3 − 4x−5)
Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same.
(ax + b) (a + d)2
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
\[\frac{x}{1 + \tan x}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is
Find the derivative of f(x) = tan(ax + b), by first principle.