English

( X 3 + 1 ) ( X − 2 ) X 2 - Mathematics

Advertisements
Advertisements

Question

\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 

Solution

\[\frac{d}{dx}\left( \frac{\left( x^3 + 1 \right)\left( x - 2 \right)}{x^2} \right)\]
\[ = \frac{d}{dx}\left( \frac{x^4 - 2 x^3 + x - 2}{x^2} \right)\]
\[ = \frac{d}{dx}\left( \frac{x^4}{x^2} \right) - 2\frac{d}{dx}\left( \frac{x^3}{x^2} \right) + \frac{d}{dx}\left( \frac{x}{x^2} \right) - \frac{d}{dx}\left( \frac{2}{x^2} \right)\]
\[ = \frac{d}{dx}\left( x^2 \right) - 2\frac{d}{dx}\left( x \right) + \frac{d}{dx}\left( x^{- 1} \right) - 2\frac{d}{dx}\left( x^{- 2} \right)\]
\[ = 2x - 2 - \frac{1}{x^2} - 2\left( - 2 \right) x^{- 3} \]
\[ = 2x - 2 - \frac{1}{x^2} + \frac{4}{x^3}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.3 [Page 34]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.3 | Q 10 | Page 34

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{1}{\sqrt{3 - x}}\]


 x2 + x + 3


 (x2 + 1) (x − 5)


 (x2 + 1) (x − 5)


Differentiate  of the following from first principle:

 eax + b


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


Differentiate each of the following from first principle:

x2 e


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


\[\sin \sqrt{2x}\]


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


x5 (3 − 6x−9


x4 (3 − 4x−5)


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


(ax + b) (a + d)2


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{x}{1 + \tan x}\] 


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Find the derivative of f(x) = tan(ax + b), by first principle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×