English

Find the Derivative of F (X) = X2 − 2 at X = 10 - Mathematics

Advertisements
Advertisements

Question

Find the derivative of f (x) = x2 − 2 at x = 10

Solution

We have:

\[f'(x) = \lim_{h \to 0} \frac{f(10 + h) - f(10)}{h}\]
\[ = \lim_{h \to 0} \frac{(10 + h )^2 - 2 - ( {10}^2 - 2)}{h}\]
\[ = \lim_{h \to 0} \frac{100 + h^2 + 20h - 2 - 100 + 2}{h}\]
\[ = \lim_{h \to 0} \frac{h^2 + 20h}{h}\]
\[ = \lim_{h \to 0} \frac{h(h + 20)}{h}\]
\[ = \lim_{h \to 0} h + 20\]
\[ = 0 + 20\]
\[ = 20\]

 
shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.1 [Page 3]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.1 | Q 2 | Page 3

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of the following function at the indicated point:


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{2}{x}\]


\[\frac{1}{\sqrt{x}}\]


\[\frac{1}{x^3}\]


\[\frac{x^2 - 1}{x}\]


\[\frac{x + 1}{x + 2}\]


Differentiate  of the following from first principle:

 eax + b


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


\[\cos \sqrt{x}\]


(2x2 + 1) (3x + 2) 


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 


\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


x3 e


x2 sin x log 


\[e^x \log \sqrt{x} \tan x\] 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{{10}^x}{\sin x}\] 


\[\frac{a + b \sin x}{c + d \cos x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×