Advertisements
Advertisements
Question
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
Solution
\[\text{ We have }: \]
\[f'\left( \frac{\pi}{2} \right) = \lim_{h \to 0} \frac{f\left( \frac{\pi}{2} + h \right) - f\left( \frac{\pi}{2} \right)}{h}\]
\[ = \lim_{h \to 0} \frac{2cos\left( \frac{\pi}{2} + h \right) - cos\left( \frac{\pi}{2} \right)}{h}\]
\[ = \lim_{h \to 0} \frac{- 2sin h - 0}{h}\]
\[ = - 2 \lim_{h \to 0} \frac{\sinh}{h}\]
\[ = - 2(1)\]
\[ = - 2\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of `2x - 3/4`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of the following function at the indicated point:
\[\frac{1}{\sqrt{3 - x}}\]
Differentiate of the following from first principle:
e3x
Differentiate of the following from first principle:
sin (x + 1)
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
Differentiate each of the following from first principle:
\[3^{x^2}\]
\[\sqrt{\tan x}\]
\[\sin \sqrt{2x}\]
\[\tan \sqrt{x}\]
log3 x + 3 loge x + 2 tan x
cos (x + a)
sin x cos x
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[e^x \log \sqrt{x} \tan x\]
x4 (5 sin x − 3 cos x)
x5 (3 − 6x−9)
Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same.
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{x + \cos x}{\tan x}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
Find the derivative of f(x) = tan(ax + b), by first principle.