Advertisements
Advertisements
Question
Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]
Solution
\[\text{ Case } 1:\]
\[x > 0\]
\[\left| x \right| = x\]
\[\left( x + \left| x \right| \right)\left| x \right|\]
\[ = \left( x + x \right)x\]
\[ = 2 x^2 \]
\[\frac{d}{dx}\left[ \left( x + \left| x \right| \right)\left| x \right| \right] = \frac{d}{dx}\left( 2 x^2 \right) = 4x \left( 1 \right)\]
\[\text{ Case } 2:\]
\[x < 0\]
\[\left| x \right| = - x\]
\[\left( x + \left| x \right| \right)\left| x \right|\]
\[ = \left( x - x \right)x\]
\[ = 0\]
\[\frac{d}{dx}\left[ \left( x + \left| x \right| \right)\left| x \right| \right] = \frac{d}{dx}\left( 0 \right) = 0 \left( 2 \right)\]
\[\text{ From } (1) \text{and} (2), \text{ we have}:\]
\[\frac{d}{dx}\left[ \left( x + \left| x \right| \right)\left| x \right| \right] = \binom{4x, if x > 0}{0, if x < 0}\]
\[\]
APPEARS IN
RELATED QUESTIONS
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{x^2 - 1}{x}\]
(x + 2)3
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
eax + b
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate of the following from first principle:
x sin x
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
tan (2x + 1)
\[\sin \sqrt{2x}\]
x4 − 2 sin x + 3 cos x
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
sin x cos x
(x sin x + cos x ) (ex + x2 log x)
\[e^x \log \sqrt{x} \tan x\]
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
x4 (5 sin x − 3 cos x)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
(ax + b) (a + d)2
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{e^x}{1 + x^2}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{x}{1 + \tan x}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
If f (x) = \[\log_{x_2}\]write the value of f' (x).
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
`(a + b sin x)/(c + d cos x)`
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.