English

Write the Value of D D X { ( X + | X | ) | X | } - Mathematics

Advertisements
Advertisements

Question

Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]

Solution

\[\text{ Case } 1:\]
\[x > 0\]
\[\left| x \right| = x\]
\[\left( x + \left| x \right| \right)\left| x \right|\]
\[ = \left( x + x \right)x\]
\[ = 2 x^2 \]
\[\frac{d}{dx}\left[ \left( x + \left| x \right| \right)\left| x \right| \right] = \frac{d}{dx}\left( 2 x^2 \right) = 4x \left( 1 \right)\]
\[\text{ Case } 2:\]
\[x < 0\]
\[\left| x \right| = - x\]
\[\left( x + \left| x \right| \right)\left| x \right|\]
\[ = \left( x - x \right)x\]
\[ = 0\]
\[\frac{d}{dx}\left[ \left( x + \left| x \right| \right)\left| x \right| \right] = \frac{d}{dx}\left( 0 \right) = 0 \left( 2 \right)\]
\[\text{ From } (1) \text{and} (2), \text{ we have}:\]
\[\frac{d}{dx}\left[ \left( x + \left| x \right| \right)\left| x \right| \right] = \binom{4x, if x > 0}{0, if x < 0}\]
\[\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.6 [Page 47]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.6 | Q 6 | Page 47

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{x^2 - 1}{x}\]


(x + 2)3


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle:

 eax + b


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate  of the following from first principle:

 x sin x


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle: 

\[e^{x^2 + 1}\]


tan (2x + 1) 


\[\sin \sqrt{2x}\]


x4 − 2 sin x + 3 cos x


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


sin x cos x


(x sin x + cos x ) (ex + x2 log x


\[e^x \log \sqrt{x} \tan x\] 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


x4 (5 sin x − 3 cos x)


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2


(ax + b) (a + d)2


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{e^x}{1 + x^2}\] 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{x}{1 + \tan x}\] 


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


`(a + b sin x)/(c + d cos x)`


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×