Advertisements
Advertisements
Question
(x + 2)3
Solution
\[\frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h + 2 \right)^3 - \left( x + 2 \right)^3}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h + 2 - x - 2 \right)\left[ \left( x + h + 2 \right)^2 + \left( x + h + 2 \right)\left( x + 2 \right) + \left( x + 2 \right)^2 \right]}{h}\]
\[ = \lim_{h \to 0} \frac{h\left[ \left( x + h + 2 \right)^2 + \left( x + h + 2 \right)\left( x + 2 \right) + \left( x + 2 \right)^2 \right]}{h}\]
\[ = \lim_{h \to 0} \left[ \left( x + h + 2 \right)^2 + \left( x + h + 2 \right)\left( x + 2 \right) + \left( x + 2 \right)^2 \right]\]
\[ = \left[ \left( x + 0 + 2 \right)^2 + \left( x + 0 + 2 \right)\left( x + 2 \right) + \left( x + 2 \right)^2 \right]\]
\[ = \left( x + 2 \right)^2 + \left( x + 2 \right)^2 + \left( x + 2 \right)^2 \]
\[ = 3 \left( x + 2 \right)^2\]
APPEARS IN
RELATED QUESTIONS
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of f (x) x at x = 1
\[\frac{x^2 + 1}{x}\]
\[\frac{1}{\sqrt{3 - x}}\]
Differentiate of the following from first principle:
(−x)−1
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
Differentiate each of the following from first principle:
\[3^{x^2}\]
tan (2x + 1)
\[\tan \sqrt{x}\]
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
(x3 + x2 + 1) sin x
sin x cos x
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
x5 (3 − 6x−9)
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
\[\frac{x^5 - \cos x}{\sin x}\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
Find the derivative of x2 cosx.