Advertisements
Advertisements
Question
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to
Options
\[\frac{1}{100}\]
100
50
0
Solution
\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\]
Differentiating both sides with respect to x, we get
\[f'\left( x \right) = \frac{d}{dx}\left( 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100} \right)\]
\[ = \frac{d}{dx}\left( 1 \right) + \frac{d}{dx}\left( x \right) + \frac{d}{dx}\left( \frac{x^2}{2} \right) + . . . + \frac{d}{dx}\left( \frac{x^{100}}{100} \right)\]
\[ = \frac{d}{dx}\left( 1 \right) + \frac{d}{dx}\left( x \right) + \frac{1}{2}\frac{d}{dx}\left( x^2 \right) + . . . + \frac{1}{100}\frac{d}{dx}\left( x^{100} \right)\]
\[ = 0 + 1 + \frac{1}{2} \times 2x + . . . + \frac{1}{100} \times 100 x^{99} \left( y = x^n \Rightarrow \frac{dy}{dx} = n x^{n - 1} \right) \]
\[ = 1 + x + x^2 + . . . + x^{99}\]
Putting x = 1, we get
\[f'\left( 1 \right) = 1 + 1 + 1 + . . . + 1 \left( 100 \text{ terms } \right)\]
\[ = 100\]
Hence, the correct answer is option (b).
APPEARS IN
RELATED QUESTIONS
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of x–3 (5 + 3x).
Find the derivative of f (x) = 3x at x = 2
Find the derivative of f (x) x at x = 1
Find the derivative of f (x) = cos x at x = 0
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
\[\frac{1}{\sqrt{x}}\]
\[\frac{x + 1}{x + 2}\]
x2 + x + 3
(x + 2)3
Differentiate of the following from first principle:
e3x
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
tan 2x
\[\tan \sqrt{x}\]
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
cos (x + a)
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
x3 ex
(2x2 − 3) sin x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
\[\frac{x \tan x}{\sec x + \tan x}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{x + \cos x}{\tan x}\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
Find the derivative of x2 cosx.
`(a + b sin x)/(c + d cos x)`