Advertisements
Advertisements
Question
\[\frac{x + e^x}{1 + \log x}\]
Solution
\[\text{ Let } u = x + e^x ; v = 1 + \log x\]
\[\text{ Then }, u' = 1 + e^x ; v' = \frac{1}{x}\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{x + e^x}{1 + \log x} \right) = \frac{\left( 1 + \log x \right)\left( 1 + e^x \right) - \left( x + e^x \right)\left( \frac{1}{x} \right)}{(1 + \log x )^2}\]
\[ = \frac{x + x e^x + x \log x + x \log x e^x - x - e^x}{x(1 + \log x )^2}\]
\[ = \frac{x \log x + x \log x e^x - e^x + x e^x}{x(1 + \log x )^2}\]
\[ = \frac{x \log x \left( 1 + e^x \right) - e^x \left( 1 - x \right)}{x(1 + \log x )^2}\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of f (x) = x2 − 2 at x = 10
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{1}{x^3}\]
\[\frac{x^2 + 1}{x}\]
\[\frac{x + 1}{x + 2}\]
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
tan2 x
\[\sqrt{\tan x}\]
x4 − 2 sin x + 3 cos x
(2x2 + 1) (3x + 2)
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
2 sec x + 3 cot x − 4 tan x
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
x2 ex log x
(1 +x2) cos x
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
x4 (5 sin x − 3 cos x)
x−4 (3 − 4x−5)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
\[\frac{e^x}{1 + x^2}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
`(a + b sin x)/(c + d cos x)`