English

X + E X 1 + Log X - Mathematics

Advertisements
Advertisements

Question

\[\frac{x + e^x}{1 + \log x}\] 

Solution

\[\text{ Let } u = x + e^x ; v = 1 + \log x\]
\[\text{ Then }, u' = 1 + e^x ; v' = \frac{1}{x}\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{x + e^x}{1 + \log x} \right) = \frac{\left( 1 + \log x \right)\left( 1 + e^x \right) - \left( x + e^x \right)\left( \frac{1}{x} \right)}{(1 + \log x )^2}\]
\[ = \frac{x + x e^x + x \log x + x \log x e^x - x - e^x}{x(1 + \log x )^2}\]
\[ = \frac{x \log x + x \log x e^x - e^x + x e^x}{x(1 + \log x )^2}\]
\[ = \frac{x \log x \left( 1 + e^x \right) - e^x \left( 1 - x \right)}{x(1 + \log x )^2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.5 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.5 | Q 3 | Page 44

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{1}{x^3}\]


\[\frac{x^2 + 1}{x}\]


\[\frac{x + 1}{x + 2}\]


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


tan2 


\[\sqrt{\tan x}\]


x4 − 2 sin x + 3 cos x


(2x2 + 1) (3x + 2) 


\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 


2 sec x + 3 cot x − 4 tan x


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


x2 ex log 


(1 +x2) cos x


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


x4 (5 sin x − 3 cos x)


x4 (3 − 4x−5)


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)


\[\frac{e^x}{1 + x^2}\] 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{{10}^x}{\sin x}\] 


\[\frac{a + b \sin x}{c + d \cos x}\] 


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×