English

1 X 3 - Mathematics

Advertisements
Advertisements

Question

\[\frac{1}{x^3}\]

Solution

\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{1}{(x + h )^3} - \frac{1}{x^3}}{h}\]
\[ = \lim_{h \to 0} \frac{x^3 - (x + h )^3}{h(x + h )^3 x^3}\]
\[ = \lim_{h \to 0} \frac{x^3 - x^3 - 3 x^2 h - 3x h^2 - h^3}{h(x + h )^3 x^3}\]
\[ = \lim_{h \to 0} \frac{- 3 x^2 h - 3x h^2 - h^3}{h(x + h )^3 x^3}\]
\[ = \lim_{h \to 0} \frac{h\left( - 3 x^2 - 3xh - h^2 \right)}{h(x + h )^3 x^3}\]
\[ = \lim_{h \to 0} \frac{\left( - 3 x^2 - 3xh - h^2 \right)}{(x + h )^3 x^3}\]
\[ = \frac{- 3 x^2}{x^6}\]
\[ = \frac{- 3}{x^4}\]
\[ = - 3 x^{- 4} \]
\[\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.2 [Page 25]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.2 | Q 1.03 | Page 25

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x2 – 2 at x = 10.


Find the derivative of x at x = 1.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of f (x) = 99x at x = 100 


Find the derivative of f (x) = cos x at x = 0


\[\frac{x + 2}{3x + 5}\]


\[\frac{1}{\sqrt{3 - x}}\]


 (x2 + 1) (x − 5)


Differentiate  of the following from first principle: 

− x


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


Differentiate each of the following from first principle: 

sin x + cos x


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


(2x2 + 1) (3x + 2) 


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


x2 ex log 


xn tan 


sin2 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


x5 (3 − 6x−9


x4 (3 − 4x−5)


x−3 (5 + 3x


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{a + b \sin x}{c + d \cos x}\] 


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Find the derivative of x2 cosx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×