Advertisements
Advertisements
प्रश्न
\[\frac{x + e^x}{1 + \log x}\]
उत्तर
\[\text{ Let } u = x + e^x ; v = 1 + \log x\]
\[\text{ Then }, u' = 1 + e^x ; v' = \frac{1}{x}\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{x + e^x}{1 + \log x} \right) = \frac{\left( 1 + \log x \right)\left( 1 + e^x \right) - \left( x + e^x \right)\left( \frac{1}{x} \right)}{(1 + \log x )^2}\]
\[ = \frac{x + x e^x + x \log x + x \log x e^x - x - e^x}{x(1 + \log x )^2}\]
\[ = \frac{x \log x + x \log x e^x - e^x + x e^x}{x(1 + \log x )^2}\]
\[ = \frac{x \log x \left( 1 + e^x \right) - e^x \left( 1 - x \right)}{x(1 + \log x )^2}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of `2x - 3/4`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
Find the derivative of f (x) = x2 − 2 at x = 10
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{x + 2}{3x + 5}\]
Differentiate of the following from first principle:
e3x
Differentiate of the following from first principle:
eax + b
Differentiate of the following from first principle:
(−x)−1
Differentiate of the following from first principle:
sin (x + 1)
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
(2x2 + 1) (3x + 2)
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
x3 sin x
x2 ex log x
xn tan x
(x sin x + cos x) (x cos x − sin x)
(1 +x2) cos x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{e^x}{1 + x^2}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{x^5 - \cos x}{\sin x}\]
\[\frac{1}{a x^2 + bx + c}\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
Write the derivative of f (x) = 3 |2 + x| at x = −3.
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
(ax2 + cot x)(p + q cos x)
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.