Advertisements
Advertisements
Question
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Solution
Let f(x) = (ax + b)n (cx + d)m
By Leibnitz product rule,
f'(x) = `(ax + b)^n d/dx (cx + d)^m + (cx + d)^m d/dx (ax + b)^n` ...(1)
Now, let f1(x) = (cx + d)m
f1(x + h) = (cx + ch + d)m
f1(x) = `lim_(h->0)(f_1(x + h) - f_1(x))/h`
= `lim_(h->0) ((cx + ch + d)^m - (cx + d)^n)/h`
= `(cx + d)^m lim_(h-0)1/h [(1 + (ch)/(cx + d))^m - 1]`
= `(cx + d)^m lim_(h-0) 1/h[(1 + (mch)/(cx + d) + (m(m - 1))/2 ((c^2h^2))/(cx + d)^2 + ...) -1]`
= `(cx + d)^m lim_(h->0) 1/h [(mch)/(cx + d) + (m(m - 1)c^2h^2)/(2(cx + d)^2) + ...("Terms containing higher degrees of h")]`
= `(cx + d)^m lim_(h->0) [(mc)/(cx + d) + (m(m - 1)c^2h)/(2(cx + d)^2 + ...]]`
= `(cx + d)^m [(mc)/(cx + d) + 0]`
= `(mc(cx + d)^m)/(cx + d)`
= mc (cx + d)m - 1
`d/dx (cx + d)^m` = mc (cx + d)m - 1 .....(2)
Similarly, `d/dx (ax + b)^n` = na (ax + b)n - 1 ...(3)
Therefore, from (1), (2), and (3), we obtain
f(x) = (ax + b)n {mc(cx + d)m - 1} + (cx + d)m {na (ax + b)n - 1}
= (ax + b)n - 1 (cx + d)m - 1 [mc (ax + b) + na (cx + d)]
APPEARS IN
RELATED QUESTIONS
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
Find the derivative of the following function at the indicated point:
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
\[\frac{x^2 - 1}{x}\]
(x2 + 1) (x − 5)
\[\sqrt{2 x^2 + 1}\]
Differentiate of the following from first principle:
e3x
Differentiate of the following from first principle:
− x
Differentiate of the following from first principle:
sin (x + 1)
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
Differentiate each of the following from first principle:
\[3^{x^2}\]
tan (2x + 1)
tan 2x
\[\cos \sqrt{x}\]
\[\tan \sqrt{x}\]
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
\[\frac{2^x \cot x}{\sqrt{x}}\]
(2x2 − 3) sin x
x−3 (5 + 3x)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
Find the derivative of 2x4 + x.