English

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): (ax + b)n (cx + d)m - Mathematics

Advertisements
Advertisements

Question

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m

Sum

Solution

Let f(x) = (ax + b)n (cx + d)

By Leibnitz product rule,

f'(x) = `(ax + b)^n d/dx (cx + d)^m + (cx + d)^m d/dx (ax + b)^n`    ...(1)

Now, let f1(x) = (cx + d)m

f1(x + h) = (cx + ch + d)m

f1(x) = `lim_(h->0)(f_1(x + h) - f_1(x))/h`

= `lim_(h->0) ((cx + ch + d)^m - (cx + d)^n)/h`

= `(cx + d)^m lim_(h-0)1/h [(1 + (ch)/(cx + d))^m - 1]`

= `(cx + d)^m lim_(h-0) 1/h[(1 + (mch)/(cx + d) + (m(m - 1))/2 ((c^2h^2))/(cx + d)^2 + ...) -1]`

= `(cx + d)^m lim_(h->0) 1/h [(mch)/(cx + d) + (m(m - 1)c^2h^2)/(2(cx + d)^2) + ...("Terms containing higher degrees of h")]`

= `(cx + d)^m lim_(h->0) [(mc)/(cx + d) + (m(m - 1)c^2h)/(2(cx + d)^2 + ...]]`

= `(cx + d)^m [(mc)/(cx + d) + 0]`

= `(mc(cx + d)^m)/(cx + d)`

= mc (cx + d)m - 1

`d/dx (cx + d)^m` = mc (cx + d)m - 1      .....(2)

Similarly, `d/dx (ax + b)^n` = na (ax + b)n - 1     ...(3)

Therefore, from (1), (2), and (3), we obtain

f(x) = (ax + b)n {mc(cx + d)m - 1} + (cx + d)m {na (ax + b)n - 1}

= (ax + b)n - 1 (cx + d)m - 1 [mc (ax + b) + na (cx + d)]

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Miscellaneous Exercise [Page 317]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Miscellaneous Exercise | Q 13 | Page 317

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`4sqrtx - 2`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

cosec x cot x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of the following function at the indicated point:


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


\[\frac{x^2 - 1}{x}\]


 (x2 + 1) (x − 5)


\[\sqrt{2 x^2 + 1}\]


Differentiate  of the following from first principle:

e3x


Differentiate  of the following from first principle: 

− x


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


Differentiate each of the following from first principle:

\[3^{x^2}\]


tan (2x + 1) 


 tan 2


\[\cos \sqrt{x}\]


\[\tan \sqrt{x}\] 


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


\[\frac{2^x \cot x}{\sqrt{x}}\] 


(2x2 − 3) sin 


x−3 (5 + 3x


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{{10}^x}{\sin x}\] 


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


\[\frac{ax + b}{p x^2 + qx + r}\] 


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Find the derivative of 2x4 + x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×