English

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): sinn x - Mathematics

Advertisements
Advertisements

Question

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x

Sum

Solution

Let y = sinn x.

Accordingly, for n = 1, y = sin x

∴ `(dy)/(dx) = cos x` i.e. `(dy)/(dx) = sin x = cos x`

For n = 2, y = sin2 x

∴ `(dy)/(dx) = (d)/(dx) (sin x sin x)`

= (sin x)' sinx + sin x (sin x)'      [By Leibnitz product rule]

= cos x sin x + sin x cos x

= 2 sin x cos x    ...(1)

For n = 3, y = sin3 x

∴ `(dy)/(dx) = (d)/(dx) (sin x sin^2 x)`

= (sin x)' sinx2 + sin x (sin2 x)       [By Leibnitz product rule]

= cos x sin2 x + sin x (2 sin x cos x)     [Using (1)]

= cos x sin2 x 2 sin2 x cos x

= 3 sin2 x cos x

We assert that `d/dx (sin ^n x) = n sin ^(n - 1) x cos x`

Let our assertion be true for n = k.

i.e., `d/dx (sin ^k x) = k sin ^((k - 1)) x cos x`       ...(2)

Consider

`d/dx (sin^(k + 1) x)` = `d/dx (sin x sin^k x)`      

= (sin x)' sinxk x + sin x (sink x)                   [By Leibnitz product rule]

= cos x sink x + sin x (k sin(k - 1) x cos x)       [Using (2)]

= cos x sink x  + k sink x cos x

= (k + 1) sink x cos x

Thus, our assertion is true for n = k + 1.

Hence, by mathematical induction, `d/dx(sin^n x)`= n sin(n - 1) x cos x

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Miscellaneous Exercise [Page 318]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Miscellaneous Exercise | Q 19 | Page 318

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x at x = 1.


Find the derivative of `2x - 3/4`


Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of f (x) = 3x at x = 2 


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


(x + 2)3


 (x2 + 1) (x − 5)


x ex


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


tan (2x + 1) 


\[\cos \sqrt{x}\]


ex log a + ea long x + ea log a


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


\[\frac{2 x^2 + 3x + 4}{x}\] 


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

x3 sin 


(x3 + x2 + 1) sin 


x4 (5 sin x − 3 cos x)


x4 (3 − 4x−5)


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{1 + \log x}{1 - \log x}\] 


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


\[\frac{x}{1 + \tan x}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×