Advertisements
Advertisements
Question
\[\frac{1 + \log x}{1 - \log x}\]
Solution
\[\text{ Let } u = 1 + \log x; v = 1 - \log x\]
\[\text{ Then }, u' = \frac{1}{x}; v' = \frac{- 1}{x}\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{1 + \log x}{1 - \log x} \right) = \frac{\left( 1 - \log x \right)\left( \frac{1}{x} \right) - \left( 1 + \log x \right)\left( \frac{- 1}{x} \right)}{\left( 1 - \log x \right)^2}\]
\[ = \frac{1 - \log x + 1 + \log x}{x \left( 1 - \log x \right)^2}\]
\[ = \frac{2}{x \left( 1 - \log x \right)^2}\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of x5 (3 – 6x–9).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of f (x) = cos x at x = 0
Find the derivative of f (x) = tan x at x = 0
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
\[\frac{2}{x}\]
\[\frac{x + 2}{3x + 5}\]
\[\frac{2x + 3}{x - 2}\]
Differentiate of the following from first principle:
e3x
x ex
Differentiate of the following from first principle:
(−x)−1
Differentiate each of the following from first principle:
sin x + cos x
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
Differentiate each of the following from first principle:
\[3^{x^2}\]
ex log a + ea long x + ea log a
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
2 sec x + 3 cot x − 4 tan x
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
sin x cos x
(x sin x + cos x) (x cos x − sin x)
(1 +x2) cos x
sin2 x
logx2 x
x3 ex cos x
x4 (5 sin x − 3 cos x)
(ax + b) (a + d)2
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
\[\frac{x}{\sin^n x}\]
\[\frac{1}{a x^2 + bx + c}\]
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.